674 research outputs found

    Molecular Opacities for Exoplanets

    Get PDF
    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy

    Small carbon chains in circumstellar envelopes

    Get PDF
    Observations were made for a number of carbon-rich circumstellar envelopes using the Phoenix spectrograph on the Gemini South telescope to determine the abundance of small carbon chain molecules. Vibration-rotation lines of the ν3\nu_{3} antisymmetric stretch of C3_{3} near 2040 cm−1^{-1} (4.902 μ\mum) have been used to determine the column density for four carbon-rich circumstellar envelopes: CRL 865, CRL 1922, CRL 2023 and IRC +10216. We additionally calculate the column density of C5_{5} for IRC +10216, and provide an upper limit for 5 more objects. An upper limit estimate for the C7_{7} column density is also provided for IRC+10216. A comparison of these column densities suggest a revision to current circumstellar chemical models may be needed

    ACE-FTS Observations of Acetonitrile in the Lower Stratosphere

    Get PDF
    This work reports the first infrared satellite remote-sensing measurements of acetonitrile (CH3CN) in the Earth\u27s atmosphere using solar occultation measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) between 2004 and 2011. The retrieval scheme uses new quantitative laboratory spectroscopic measurements of acetonitrile (Harrison and Bernath, 2012). Although individual ACE-FTS profile measurements are dominated by measurement noise, median profiles in 10 degrees latitude bins show a steady decline in volume mixing ratio from similar to 150 ppt (parts per trillion) at 11.5 km to \u3c 40 ppt at 25.5-29.5 km. These new measurements agree well with the scant available air-and balloon-borne data in the lower stratosphere. An acetonitrile stratospheric lifetime of 73 ± 20 yr has been determined

    Hot methane line lists for exoplanet and brown dwarf atmospheres

    Get PDF
    We present comprehensive experimental line lists of methane (CH4) at high temperatures obtained by recording Fourier transform infrared emission spectra. Calibrated line lists are presented for the temperatures 300 - 1400 degC at twelve 100 degC intervals spanning the 960 - 5000 cm-1 (2.0 - 10.4 microns) region of the infrared. This range encompasses the dyad, pentad and octad regions, i.e., all fundamental vibrational modes along with a number of combination, overtone and hot bands. Using our CH4 spectra, we have estimated empirical lower state energies (Elow in cm-1) and our values have been incorporated into the line lists along with line positions (cm-1) and calibrated line intensities (S' in cm molecule-1). We expect our hot CH4 line lists to find direct application in the modeling of planetary atmospheres and brown dwarfs.Comment: Supplementary material is provided via the Astrophysical Journal referenc

    Fourier Transform Emission Spectroscopy of YH and YD: Observation of New A¹Δ and B¹Π Electronic States

    Get PDF
    The emission spectra of YH and YD molecules have been investigated in the 3600–12 000 cm−1 region using a Fourier transform spectrometer. Molecules were formed in an yttrium hollow cathode lamp operated with a continuous flow of a mixture of Ne and Ar gases, and YH and YD were observed together in the same spectra. A group of bands observed near 1 μm have been identified as 0-0 and 1-1 bands of the A1Δ-X1Σ+ and B1Π-X1Σ+ transitions of YH and the 0-0 bands of the same two transitions for YD. The A1Δ and B1Π states of YH are separated by only about 12 cm−1 and are involved in strong interactions. A perturbation analysis has been performed using the PGOPHER program to fit the two interacting electronic states and spectroscopic parameters for the A1Δ and B1Π states, including the interaction matrix elements, have been obtained for the first time

    First space-borne measurements of methanol inside aged southern tropical to mid-latitude biomass burning plumes using the ACE-FTS instrument

    Get PDF
    International audienceFirst measurements from space of upper tropospheric and lower stratospheric methanol profiles within aged fire plumes are reported. Elevated levels of methanol at 0–45° S from 30 September to 3 November 2004 have been measured by the high resolution infrared spectrometer ACE-FTS onboard the SCISAT satellite. Methanol volume mixing ratios higher than 4000 pptv are detected and are strongly correlated with other fire products such as CO, C2H6, and HCN. A sensitivity study of the methanol retrieval, accounting for random and systematic contributions, shows that the retrieved methanol profile for a single occultation exceeds 100% error above 16.5 km, with an accuracy of about 20% for measurements inside polluted air masses. The upper tropospheric enhancement ratio of methanol with respect to CO is estimated from the correlation plot between methanol and CO for aged tropical biomass burning plumes. This ratio is in good agreement with the ratio measured in the free troposphere (up to 12 km) by recent aircraft studies and does not suggest any secondary production of methanol by oxidation in aged biomass burning plumes

    Upper Tropospheric Water Vapour Variability at High Latitudes- Part 1: Influence of the Annular Modes

    Get PDF
    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90° N and 60-90°S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004-2013). Using a seasonal time step and all seasons, 45% of the variability is explained by the AO at 6.5 ± -0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5-km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to \u3e 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km

    First space-borne measurements of methanol inside aged tropical biomass burning plumes using the ACE-FTS instrument

    Get PDF
    International audienceFirst measurements from space of upper tropospheric and lower stratospheric methanol profiles within aged fire plumes are reported. Elevated levels of methanol at 0–45° S from 30 September to 3 November 2004 have been measured by the high resolution infrared spectrometer ACE-FTS onboard the SCISAT satellite. Methanol volume mixing ratios higher than 4000 pptv are detected and are strongly correlated with other fire products such as CO, C2H6, and HCN. A sensitivity study of the methanol retrieval, accounting for random and systematic contributions, shows that the retrieved methanol profile is reliable from 8.5 to 16.5 km, with an accuracy of about 20% for measurements inside polluted air masses. The upper tropospheric enhancement ratio of methanol with respect to CO is estimated from the correlation plot between methanol and CO for aged tropical biomass burning plumes. This ratio is in good agreement with the ratio measured in the free troposphere (up to 12 km) by recent aircraft studies and does not suggest any secondary production of methanol by oxidation in aged biomass burning plumes
    • …
    corecore