85 research outputs found

    Molecular and Quantitative Genetic Differentiation in European Populations of Silene latifolia (Caryophyllaceae)

    Get PDF
    Background and Aims Among-population differentiation in phenotypic traits and allelic variation is expected as a consequence of isolation, drift, founder effects and local selection. Therefore, investigating molecular and quantitative genetic divergence is a pre-requisite for studies of local adaptation in response to selection under variable environmental conditions. Methods Among- and within-population variation were investigated in six geographically separated European populations of the white campion, Silene latifolia, both for molecular variation at six newly developed microsatellite loci and for quantitative variation in morphological and life-history traits. To avoid confounding effects of the maternal environment, phenotypic traits were measured on greenhouse-reared F1 offspring. Tests were made for clinal variation, and the correlations among molecular, geographic and phenotypic distances were compared with Mantel tests. Key Results The six populations of Silene latifolia investigated showed significant molecular and quantitative genetic differentiation. Geographic and phenotypic distances were significantly associated. Age at first flowering increased significantly with latitude and exhibited a Qst value of 0·17 in females and 0·10 in males, consistent with adaptation to local environmental conditions. By contrast, no evidence of isolation-by-distance and no significant association between molecular and phenotypic distances were found. Conclusions Significant molecular genetic divergence among populations of Silene latifolia, from the European native range is consistent with known limited seed and pollen flow distances, while significant quantitative genetic divergence among populations and clinal variation for age at first flowering suggest local adaptatio

    Benefits and costs to pollinating, seed-eating insects: the effect of flower size and fruit abortion on larval performance

    Get PDF
    Plant-pollinator interactions are well-known examples of mutualism, but are not free of antagonism. Antagonistic interactions and defenses or counter-defenses are expected particularly in nursery pollination. In these systems, adult insects, while pollinating, lay their eggs in flowers, and juveniles consume the seeds from one or several fruits, thereby substantially reducing plant fitness. The outcome of such interactions will depend, for the plant, on the balance between pollination versus seed predation and for the larvae on the balance between the food and shelter provided versus the costs imposed by plant defenses, e.g., through abortion of infested fruits. Here, we examine the costs and benefits to the larvae in the nursery-pollination system Silene latifolia/Hadena bicruris. Using selection lines that varied in flower size (large- vs. small-flowered plants), we investigated the effects of variation in flower and fruit size and of a potential defense, fruit abortion, on larval performance. In this system, infested fruits are significantly more likely to be aborted than non-infested fruits; however, it is unclear whether fruit abortion is effective as a defense. Larger flowers gave rise to larger fruits with more seeds, and larvae that were heavier at emergence. Fruit abortion was frequently observed (ca. 40% of the infested fruits). From aborted fruits, larvae emerged earlier and were substantially lighter than larvae emerging from non-aborted fruits. The lower mass at emergence of larvae from aborted fruits indicates that abortion is a resistance mechanism. Assuming that lower larval mass implies fewer resources invested in the frugivore, these results also suggest that abortion is likely to benefit the plant as a defense mechanism, by limiting both resources invested in attacked fruits, as well as the risk of secondary attack. This suggests that selective fruit abortion may contribute to the stability of mutualism also in this non-obligate syste

    Natural Genetic Variation in Arabidopsis: Tools, Traits and Prospects for Evolutionary Ecology

    Get PDF
    Background The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. Scope Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. Conclusions As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecolog

    Phenotypic divergence and inter-specific trait correlation in a plant-pollinator/seed predator mutualism

    Get PDF
    Plant-pollinator interactions have been suggested as key drivers of morphological divergence and speciation of the involved taxa. These interactions can also promote sexual dimorphism in both the plant and pollinator, particularly if the pollinator is also a seed-eater and/or exerts different selection pressures on male and female plants. Here we tested the hypotheses that plant-pollinator interactions can be reflected in trait variation and sexual dimorphism in both organisms within and across populations. Across nine European populations, we examined intraspecific variation and sexual dimorphism in phenotypic traits potentially involved in the plant-insect interaction of the dioecious white campion Silene latifolia (Caryophyllaceae) and its specialist pollinator Hadena bicruris (Noctuidae). This interaction is expected to entail sex-specific selective pressures, as female moths lay eggs on female plants and the larvae predate on the seeds during their development. We compared divergence in phenotypic traits among populations and between sexes within populations, examined correlations between plant and pollinator traits, and between phenotypic distances and genetic distances among co-occurring populations for both plants and insects. We found key differences in phenotypic traits across populations of both the plant and moth, though only in the moth were these differences correlated with geographic distances. We also found evidence for sexual dimorphism in the plant but not in the pollinator. Evolution of floral sexual dimorphism in S. latifolia most likely results from the joint contribution of different selective forces, including biotic interactions with H. bicruris moths

    Carry-over effects of bumblebee associative learning in changing plant communities leads to increased costs of foraging

    Get PDF
    Flower visitors learn to avoid food-deceptive plants and to prefer rewarding ones by associating floral cues to rewards. As co-occurring plant species have different phenologies, cue-reward associations vary over time. It is not known how these variations affect flower visitors' foraging costs and learning. We trained bumblebees of two colonies to forage in a community of deceptive and rewarding artificial inflorescences whose flower colours were either similar or dissimilar. We then modified the community composition by turning the rewarding inflorescences into unrewarding and adding rewarding inflorescences of a novel flower colour. In the short term, bees trained to similar rather than dissimilar inflorescences experienced higher costs of foraging (decreased foraging speed and accuracy) in the novel community. The colonies differed in their speed-accuracy trade-off. In the longer term, bees adapted their foraging behaviour to the novel community composition by increasingly visiting the novel rewarding inflorescence

    Stabilizing selection on nectar concentration in wild Petunia axillaris , as revealed by genetic analysis of pollen dispersal

    Get PDF
    Most animal-pollinated plants produce nectar as a pollinator reward. Despite the main role that nectar plays in plant-pollinator interactions, the impact of natural variation in nectar traits on realized male fitness is poorly known. Here, we assessed this relation for a wild Petunia axillaris population using paternity-based direct selection gradient analysis, which allowed us also to infer pollen dispersal patterns. Because male fecundity may depend on other traits which could be associated with nectar characteristics (i.e. volume and concentration), we also considered selection on other key reproductive traits. The analysis revealed that P. axillaris was a strict outcrosser, but that successful pollination occurred mainly among neighbours. Individual plants varied greatly in their male fecundity. Nectar concentration, a key feature of nectar that determines its profitability, was subjected to stabilizing selection. Selection through male function also affected corolla area (positive directional selection), corolla tube length (negative directional selection), and floral display size (stabilizing selection), but none of these traits were phenotypically correlated with nectar characteristics. Because nectar concentration affects the ability and foraging efficiency of different flower visitors to feed on nectar, stabilizing selection may reflect either the preference of the most effective pollinators, or antagonistic selection driven by pollinators and non-pollinating nectar consumers
    • …
    corecore