25 research outputs found

    Applications of Mesoporous Silica Materials in Food: a Review

    Full text link
    [EN] Mesoporous silica materials have been developed for some applications in the health field. These solids are used for the controlled release of bioactive molecules, as catalysts in the synthesis of essential nutrients, as sensors to detect unhealthy products etc., with many applications in food technologies. By combining mesoporous silica materials with food, we can create healthier products, the products that improve our quality of life. The development of mesoporous materials applied to food could result in protecting bioactive molecules during their passage though the digestive system. For this reason, the controlled release of bioactive molecules is a very interesting topic for the discipline of food technology. The use of mesoporous silica supports as catalysts in the synthesis of nutrients and as sensors for the detection of unhealthy products, essential in food, is in great demand industrially for the manufacture of functional foods and films for food and industrial packaging. This review shows some examples of silica materials and their applications in food.Supported by the Ministry of Education, Youth and Sports of the Czech Republic, Project No. MSM C73.Bernardos Bau, A.; Kourimská, L. (2013). Applications of Mesoporous Silica Materials in Food: a Review. Czech Journal of Food Sciences. 31(2):99-107. https://doi.org/10.17221/240/2012-CJFS9910731

    Nanotechnology in the Development of Novel Functional Foods or their Package. An Overview Based in Patent Analysis

    Full text link
    [EN] In recent years nanotechnology has become a significant component in food industry. It is present in all food chain steps, from the design of new ingredients or additives, to the most modern systems of food quality methods or packaging, demonstrating the great potential of this new technology in a sector as traditional as food. However, while interest by industry in nanotechnology increases, the rejection by consumers, concerned about the potential risk, does too. The aim of this review is to evaluate the development of food nanotechnology by means of a patent analysis, highlighting current applications of nanotechnology along the whole food chain and contextualizing this evolution in the social scene.Financial support from the Spanish Government (project MAT2009-14564-C04-01 and AGL2010-20539) and the Generalitat Valencia (project PROMETEO/2009/016) are gratefully acknowledged. E.P. thanks the Ministerio de Educación for a fellowshipPérez-Esteve, É.; Bernardos Bau, A.; Martínez-Máñez, R.; Barat Baviera, JM. (2013). Nanotechnology in the Development of Novel Functional Foods or their Package. An Overview Based in Patent Analysis. Recent Patents on Food, Nutrition and Agriculture. 5(1):35-43. https://doi.org/10.2174/2212798411305010006S35435

    Innovative use of essential oil cold diffusion system for improving air quality on indoor cultural heritage spaces

    Full text link
    [EN] Bioaerosols play an important role in Cultural Heritage (CH) spaces air quality and biodeterioration risk and there is a growing interest to reduce them in actual conservation strategies. Essential oils (EOs) have been wellknown in several fields for their antimicrobial properties and they have found use in a number of applications. In this work Melaleuca alternifolia (Tea tree) and Thymus vulgaris (Thyme) EOs are cold diffused in unventilated lab spaces for reducing air bacterial and fungi contamination. Moreover, Tea tree EO was also tested in an unventilated real CH space. The effectiveness of EOs in reducing air bacterial and fungi contamination in unventilated indoor spaces during 24 h was evaluated. Air quality was also analyzed by means of temperature, humidity and particulate matter variation. EOs' diffusion system CH artworks risks was studied by means of thermography, diffusion range and EOs compounds deposition on the artistic materials by GC-MS. Tea tree EOs vaporization showed the best results with 77,3% and 95,0% fungi and bacteria air contamination reduction, with no thermohydrometric alteration and absence of EOs components deposition on the artistic vault.The authors wish to thank to the priest of the Santos Juanes Church of Valencia; the 'Direccion General de Patrimonio' and Professor Pilar Roig Picazo; for giving us the permits needed in order to develop this research. We would like to thank to Fundacion Hortensia Herrero, the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22-AR (MCUI, FEDER, EU) and A.B. her Beatriz Galindo contract BG20/00020) and the Generalitat Valenciana (project PROM-ETEO 2018/024) for its financial support. Authors wish to thank the collaboration of the Dr. Ignacio Bosch Roig on the thermographic analysis and Dr. Enrique Vivo Soria for the review of the thermohydrometric data.Díaz Alonso, J.; Bernardos Bau, A.; Regidor Ros, JL.; Martínez-Máñez, R.; Bosch-Roig, P. (2021). Innovative use of essential oil cold diffusion system for improving air quality on indoor cultural heritage spaces. International Biodeterioration & Biodegradation. 162:1-10. https://doi.org/10.1016/j.ibiod.2021.10525111016

    Mesoporous Silica-Based Materials with Bactericidal Properties

    Full text link
    This is the peer reviewed version of the following article: Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., Martínez-Máñez, R., Mesoporous Silica-Based Materials with Bactericidal Properties. Small 2019, 15, 1900669. https://doi.org/10.1002/smll.201900669 , which has been published in final form at https://doi.org/10.1002/smll.201900669. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial infections. At first, the emergency of bacterial and biofilm resistance toward conventional antimicrobials is described and then how nanoparticles exert their toxic effects upon pathogenic cells is discussed. Next, the main aspects of MSMs (e.g., physicochemical properties, multifunctionality, and biosafety) which one should consider in the design of MSM-based DDSs against bacterial infections are introduced. Finally, a comprehensive analysis of all the papers published dealing with the use of MSMs for delivery of antibacterial chemicals (antimicrobial agents functionalized/adsorbed on mesoporous silica (MS), MS-loaded with antimicrobial agents, gated MS-loaded with antimicrobial agents, MS with metal-based nanoparticles, and MS-loaded with metal ions) is provided.The authors thank the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047 and PROMETEO/2018/024) for support. A.B. thanks the Spanish Government for her Juan de la Cierva incorporacion contract IJCI-2014-21534.Bernardos Bau, A.; Piacenza, E.; Sancenón Galarza, F.; Hamidi, M.; Maleki, A.; Turner, R.; Martínez-Máñez, R. (2019). Mesoporous Silica-Based Materials with Bactericidal Properties. Small. 15(24):1-34. https://doi.org/10.1002/smll.201900669S134152

    Nutritional effects of folic acid controlled release from mesoporous materials

    Get PDF
    [EN] Folic acid deficiency causes serious disorders in humans and supplementation has numerous health benefits. However, there is initial evidence that suggest a negative impact of an increased exposure to folic with respect to certain developmental and degenerative disorders. In this line, controlled release of folic acid by using mesoporous silica materials, MCM-41, has been studied as an alternative to direct supplementation. For this purpose, various mesoporous solids MCM-41 loaded with folic acid (S1) and functionalized with 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (S2) acting as "gate" have been tested. The results show that at pH 2 a strongly hindered vitamin release is observed, whereas at pH 7.5 a controlled delivery is found. Based on the obtained results of this study, folic acid controlled release could be feasible during a period of 5h using a sensitive to pH gate, and this might reduce traditional fortification negative effects, while nutritional benefits are maintainedBarat Baviera, JM.; Pérez-Esteve, É.; Bernardos Bau, A.; Martínez-Máñez, R. (2011). Nutritional effects of folic acid controlled release from mesoporous materials. Procedia Food Science. 1:1828-1832. doi:10.1016/j.profoo.2011.09.268S18281832

    Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery

    Full text link
    [EN] In recent decades, the versatility of mesoporous silica particles and their relevance to develop controlled release systems have been demonstrated. Within them, gated materials able to modulate payload delivery represent great advantages. However, the role played by the porous matrix in this kind of systems is scarce. In this work, different mesoporous silica materials (MCM-41, MCM-48, SBA-15 and UVM-7) are functionalized with oleic acid as a molecular gate. All systems are fully characterized and their ability to confine the entrapped cargo and release it in the presence of bile salts is validated with release assays and in vitro digestion experiments. The cargo release profile of each synthesized support is studied, paying attention to the inorganic scaffold. Obtained release profiles fit to Korsmeyer-Peppas model, which explains the differences among the studied supports. Based on the results, UVM-7 material was the most appropriate system for duodenal delivery and was tested in an in vivo model of the Wistar rat. Payload confinement and its complete release after gastric emptying is achieved, establishing the possible use of mesoporous silica particles as protection and direct release agents into the duodenum and, hence, demonstrating that these systems could serve as an alternative to the administration methods employed until now.This research was funded by the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22-AR (MCUI/FEDER, EU)) and the Generalitat Valenciana (project PROMETEO/2018/024 and ACIF/2016/023 grant).Poyatos-Racionero, E.; González-Álvarez, I.; González-Álvarez, M.; Martínez-Máñez, R.; Marcos Martínez, MD.; Bernardos Bau, A.; Aznar, E. (2020). Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery. Nanomaterials. 10(7):1-18. https://doi.org/10.3390/nano10071290S118107Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Llorca, E., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Stability of different mesoporous silica particles during an in vitro digestion. Microporous and Mesoporous Materials, 230, 196-207. doi:10.1016/j.micromeso.2016.05.004Di Pasqua, A. J., Sharma, K. K., Shi, Y.-L., Toms, B. B., Ouellette, W., Dabrowiak, J. C., & Asefa, T. (2008). Cytotoxicity of mesoporous silica nanomaterials. Journal of Inorganic Biochemistry, 102(7), 1416-1423. doi:10.1016/j.jinorgbio.2007.12.028Izquierdo-Barba, I., Colilla, M., Manzano, M., & Vallet-Regí, M. (2010). In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials, 132(3), 442-452. doi:10.1016/j.micromeso.2010.03.025Arruebo, M. (2011). Drug delivery from structured porous inorganic materials. WIREs Nanomedicine and Nanobiotechnology, 4(1), 16-30. doi:10.1002/wnan.132Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. doi:10.1002/anie.200604488Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734Shang, L., Bian, T., Zhang, B., Zhang, D., Wu, L.-Z., Tung, C.-H., … Zhang, T. (2013). Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie International Edition, 53(1), 250-254. doi:10.1002/anie.201306863Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030Bernardos, A., Marina, T., Žáček, P., Pérez-Esteve, É., Martínez-Mañez, R., Lhotka, M., … Klouček, P. (2014). Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95(14), 2824-2831. doi:10.1002/jsfa.7022Barat, J., Pérez-Esteve, É., Bernardos, A., & Martínez-Mañez, R. (2011). Nutritional effects of folic acid controlled release from mesoporous materials. Procedia Food Science, 1, 1828-1832. doi:10.1016/j.profoo.2011.09.268Ruiz-Rico, M., Daubenschüz, H., Pérez-Esteve, É., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Barat, J. M. (2016). Protective effect of mesoporous silica particles on encapsulated folates. European Journal of Pharmaceutics and Biopharmaceutics, 105, 9-17. doi:10.1016/j.ejpb.2016.05.016Mas, N., Arcos, D., Polo, L., Aznar, E., Sánchez-Salcedo, S., Sancenón, F., … Martínez-Máñez, R. (2014). Towards the Development of Smart 3D «Gated Scaffolds» for On-Command Delivery. Small, 10(23), 4859-4864. doi:10.1002/smll.201401227Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., & Martínez‐Máñez, R. (2019). Mesoporous Silica‐Based Materials with Bactericidal Properties. Small, 15(24), 1900669. doi:10.1002/smll.201900669Santos-Figueroa, L. E., Giménez, C., Agostini, A., Aznar, E., Marcos, M. D., Sancenón, F., … Amorós, P. (2013). Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles. Angewandte Chemie International Edition, 52(51), 13712-13716. doi:10.1002/anie.201306688Poyatos-Racionero, E., Ros-Lis, J. V., Vivancos, J.-L., & Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398-3409. doi:10.1016/j.jclepro.2017.11.075Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703dPerez-Esteve, E., Bernardos, A., Martinez-Manez, R., & M. Barat, J. (2013). Nanotechnology in the Development of Novel Functional Foods or their Package. An Overview Based in Patent Analysis. Recent Patents on Food, Nutrition & Agriculture, 5(1), 35-43. doi:10.2174/2212798411305010006Lamprecht, A., Schäfer, U., & Lehr, C. (2001). Pharmaceutical Research, 18(6), 788-793. doi:10.1023/a:1011032328064Awaad, A., Nakamura, M., & Ishimura, K. (2012). Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomedicine: Nanotechnology, Biology and Medicine, 8(5), 627-636. doi:10.1016/j.nano.2011.08.009Hussain, N. (2001). Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Advanced Drug Delivery Reviews, 50(1-2), 107-142. doi:10.1016/s0169-409x(01)00152-1Fu, C., Liu, T., Li, L., Liu, H., Chen, D., & Tang, F. (2013). The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials, 34(10), 2565-2575. doi:10.1016/j.biomaterials.2012.12.043ALOthman, Z. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902. doi:10.3390/ma5122874Asefa, T., & Tao, Z. (2012). Mesoporous silica and organosilica materials — Review of their synthesis and organic functionalization. Canadian Journal of Chemistry, 90(12), 1015-1031. doi:10.1139/v2012-094Li, Y., Li, N., Pan, W., Yu, Z., Yang, L., & Tang, B. (2017). Hollow Mesoporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery. ACS Applied Materials & Interfaces, 9(3), 2123-2129. doi:10.1021/acsami.6b13876Legnoverde, M. S., & Basaldella, E. I. (2016). Influence of particle size on the adsorption and release of cephalexin encapsulated in mesoporous silica SBA-15. Materials Letters, 181, 331-334. doi:10.1016/j.matlet.2016.06.053Popova, M., Szegedi, A., Mavrodinova, V., Novak Tušar, N., Mihály, J., Klébert, S., … Yoncheva, K. (2014). Preparation of resveratrol-loaded nanoporous silica materials with different structures. Journal of Solid State Chemistry, 219, 37-42. doi:10.1016/j.jssc.2014.07.002Martín, A., Morales, V., Ortiz-Bustos, J., Pérez-Garnes, M., Bautista, L. F., García-Muñoz, R. A., & Sanz, R. (2018). Modelling the adsorption and controlled release of drugs from the pure and amino surface-functionalized mesoporous silica hosts. Microporous and Mesoporous Materials, 262, 23-34. doi:10.1016/j.micromeso.2017.11.009Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017Silveira, G. Q., da Silva, R. S., Franco, L. P., Vargas, M. D., & Ronconi, C. M. (2015). Redox-responsive nanoreservoirs: The effect of different types of mesoporous silica on the controlled release of doxorubicin in solution and in vitro. Microporous and Mesoporous Materials, 206, 226-233. doi:10.1016/j.micromeso.2014.12.026Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials, 117(1-2), 1-9. doi:10.1016/j.micromeso.2008.07.002Lu, P.-J. (2010). Gastric juice acidity in upper gastrointestinal diseases. World Journal of Gastroenterology, 16(43), 5496. doi:10.3748/wjg.v16.i43.5496ULKER, İ., & YILDIRAN, H. (2019). The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Bioscience of Microbiota, Food and Health, 38(1), 3-9. doi:10.12938/bmfh.18-018Sardo, P., & Walker, J. H. (2008). Bariatric Surgery: Impact on Medication Management. Hospital Pharmacy, 43(2), 113-120. doi:10.1310/hpj4302-113Geraldo, M., Feder, D., Affonso Fonseca, F. L., & de Fatima Veiga Gouveia, M. R. (2014). The use of drugs in patients who have undergone bariatric surgery. International Journal of General Medicine, 219. doi:10.2147/ijgm.s55332Kurlan, R., Nutt, J. G., Woodward, W. R., Rothfield, K., Lichter, D., Miller, C., … Shoulson, I. (1988). Duodenal and gastric delivery of levodopa in parkinsonism. Annals of Neurology, 23(6), 589-595. doi:10.1002/ana.410230611Bredberg, E., Nilsson, D., Johansson, K., Aquilonius, S. M., Johnels, B., Nystr�m, C., & Paalzow, L. (1993). Intraduodenal infusion of a water-based levodopa dispersion for optimisation of the therapeutic effect in severe Parkinson’s disease. European Journal of Clinical Pharmacology, 45(2), 117-122. doi:10.1007/bf00315491Antonini, A., & Odin, P. (2009). Pros and cons of apomorphine and l-dopa continuous infusion in advanced Parkinson’s disease. Parkinsonism & Related Disorders, 15, S97-S100. doi:10.1016/s1353-8020(09)70844-2Santos García, D., de Deus Fonticoba, T., López Pazos, E., Macías Arribi, M., Llaneza González, M. A., Echarri Piudo, A., … de la Fuente Fernández, R. (2014). Manejo de las complicaciones relacionadas con la infusión intraduodenal de levodopa/carbidopa en pacientes con enfermedad de Parkinson. Revista de Neurología, 58(11), 505. doi:10.33588/rn.5811.2014067Poyatos‐Racionero, E., Pérez‐Esteve, É., Dolores Marcos, M., Barat, J. M., Martínez‐Máñez, R., Aznar, E., & Bernardos, A. (2019). New Oleic Acid‐Capped Mesoporous Silica Particles as Surfactant‐Responsive Delivery Systems. ChemistryOpen, 8(8), 1052-1056. doi:10.1002/open.201900092Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7Meléndez-Ortiz, H. I., Perera-Mercado, Y. A., García-Cerda, L. A., Mercado-Silva, J. A., & Castruita, G. (2014). Influence of the reaction conditions on the thermal stability of mesoporous MCM-48 silica obtained at room temperature. Ceramics International, 40(3), 4155-4161. doi:10.1016/j.ceramint.2013.08.072Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 279(5350), 548-552. doi:10.1126/science.279.5350.548El Haskouri, J., Zárate, D. O. de, Guillem, C., Latorre, J., Caldés, M., Beltrán, A., … Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, (4), 330-331. doi:10.1039/b110883bVersantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31-40. doi:10.1016/j.fct.2004.08.007Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5(1), 23-36. doi:10.1016/0168-3659(87)90034-4Huang, X., & Brazel, C. S. (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 73(2-3), 121-136. doi:10.1016/s0168-3659(01)00248-6Choi, S.-J., & Kim, Y.-R. (2013). Bioinspired Layered Nanoclays for Nutraceutical Delivery System. Advances in Applied Nanotechnology for Agriculture, 207-220. doi:10.1021/bk-2013-1143.ch012Sgouras, D., & Duncan, R. (1990). Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1 ? Use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation ofin vitro cytotoxicity. Journal of Materials Science: Materials in Medicine, 1(2), 61-68. doi:10.1007/bf00839070Yazdimamaghani, M., Barber, Z. B., Hadipour Moghaddam, S. P., & Ghandehari, H. (2018). Influence of Silica Nanoparticle Density and Flow Conditions on Sedimentation, Cell Uptake, and Cytotoxicity. Molecular Pharmaceutics, 15(6), 2372-2383. doi:10.1021/acs.molpharmaceut.8b0021

    New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems

    Full text link
    [EN] A new delivery microdevice, based on hydrophobic oleic acid¿capped mesoporous silica particles and able to payload release in the presence of surfactants, has been developed. The oleic acid functionalization confers to the system a high hydrophobic character, which avoids cargo release unless surfactant molecules are present. The performance of this oleic¿acid capped microdevice in the presence of different surfactants is presented and its zero¿release operation in the absence of surfactants is demonstrated.The authors want to thank the Spanish Government (projects MAT2015-64139-C4-1-R, AGL2015-70235-C2-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and RTI2018-100910-B-C41, RTI2018-101599-B-C22 and RTI2018-101599-B-C21 (MCUI/AEI/FEDER, UE)) and Generalitat Valenciana (project PROMETEO/2018/024) for support. E.P.-R. thanks the Generalitat Valenciana for her predoctoral fellowship. A.B. wants to acknowledge the Spanish Government for the financial support Juan de la Cierva Incorporación IJCI-2014-21534. The authors also thank the Electron Microscopy Service at the UPV for support.Poyatos-Racionero, E.; Pérez-Esteve, É.; Marcos Martínez, MD.; Barat Baviera, JM.; Martínez-Máñez, R.; Aznar, E.; Bernardos Bau, A. (2019). New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems. ChemistryOpen. 8(8):1052-1056. https://doi.org/10.1002/open.201900092S1052105688HARRISON, K. (2007). Introduction to polymeric drug delivery systems. Biomedical Polymers, 33-56. doi:10.1533/9781845693640.33Bourganis, V., Karamanidou, T., Kammona, O., & Kiparissides, C. (2017). Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 111, 44-60. doi:10.1016/j.ejpb.2016.11.005El-Safty, S. A., Shenashen, M. A., & Ismail, A. A. (2012). A multi-pH-dependent, single optical mesosensor/captor design for toxic metals. Chemical Communications, 48(77), 9652. doi:10.1039/c2cc34788aEl-Safty, S. A., Shenashen, M. A., Ismael, M., & Khairy, M. (2012). Mesocylindrical Aluminosilica Monolith Biocaptors for Size-Selective Macromolecule Cargos. Advanced Functional Materials, 22(14), 3013-3021. doi:10.1002/adfm.201200393Shenashen, M. A., Shahat, A., & El-Safty, S. A. (2013). Ultra-trace recognition and removal of toxic chromium (VI) ions from water using visual mesocaptor. Journal of Hazardous Materials, 244-245, 726-735. doi:10.1016/j.jhazmat.2012.11.006El-Safty, S. A., Shenashen, M. A., Ismael, M., & Khairy, M. (2012). Encapsulation of proteins into tunable and giant mesocage alumina. Chemical Communications, 48(53), 6708. doi:10.1039/c2cc30725aEl-Safty, S. A., Shenashen, M. A., & Shahat, A. (2013). Tailor-Made Micro-Object Optical Sensor Based on Mesoporous Pellets for Visual Monitoring and Removal of Toxic Metal Ions from Aqueous Media. Small, 9(13), 2288-2296. doi:10.1002/smll.201202407El-Safty, S. A., & Shenashen, M. A. (2013). Optical mesosensor for capturing of Fe(III) and Hg(II) ions from water and physiological fluids. Sensors and Actuators B: Chemical, 183, 58-70. doi:10.1016/j.snb.2013.03.041El-Sewify, I. M., Shenashen, M. A., Shahat, A., Yamaguchi, H., Selim, M. M., Khalil, M. M. H., & El-Safty, S. A. (2018). Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. Journal of Luminescence, 198, 438-448. doi:10.1016/j.jlumin.2018.02.028Emran, M. Y., El-Safty, S. A., Shenashen, M. A., & Minowa, T. (2019). A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. Sensors and Actuators B: Chemical, 284, 456-467. doi:10.1016/j.snb.2018.12.142Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062bDíez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578bDe la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421gPérez-Esteve, É., Fuentes, A., Coll, C., Acosta, C., Bernardos, A., Amorós, P., … Barat, J. M. (2015). Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 202, 124-132. doi:10.1016/j.micromeso.2014.09.049González-Alvarez, M., Coll, C., Gonzalez-Alvarez, I., Giménez, C., Aznar, E., Martínez-Bisbal, M. C., … Sancenón, F. (2017). Gated Mesoporous Silica Nanocarriers for a «Two-Step» Targeted System to Colonic Tissue. Molecular Pharmaceutics, 14(12), 4442-4453. doi:10.1021/acs.molpharmaceut.7b00565SHIMIZU, M. (2010). Interaction between Food Substances and the Intestinal Epithelium. Bioscience, Biotechnology, and Biochemistry, 74(2), 232-241. doi:10.1271/bbb.90730Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., … Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131(3), 181-189. doi:10.1016/j.jconrel.2008.07.037Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880Han, N., Wang, Y., Bai, J., Liu, J., Wang, Y., Gao, Y., … Wang, S. (2016). Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery. Microporous and Mesoporous Materials, 219, 209-218. doi:10.1016/j.micromeso.2015.08.006Zhang, J., Desai, D., & Rosenholm, J. M. (2013). Tethered Lipid Bilayer Gates: Toward Extended Retention of Hydrophilic Cargo in Porous Nanocarriers. Advanced Functional Materials, 24(16), 2352-2360. doi:10.1002/adfm.201302995Van Schooneveld, M. M., Vucic, E., Koole, R., Zhou, Y., Stocks, J., Cormode, D. P., … Mulder, W. J. M. (2008). Improved Biocompatibility and Pharmacokinetics of Silica Nanoparticles by Means of a Lipid Coating: A Multimodality Investigation. Nano Letters, 8(8), 2517-2525. doi:10.1021/nl801596aSee Supporting information for details.Said, H. M. (2011). Intestinal absorption of water-soluble vitamins in health and disease. Biochemical Journal, 437(3), 357-372. doi:10.1042/bj20110326Thakur, K., Tomar, S. K., Singh, A. K., Mandal, S., & Arora, S. (2017). Riboflavin and health: A review of recent human research. Critical Reviews in Food Science and Nutrition, 57(17), 3650-3660. doi:10.1080/10408398.2016.1145104LANE, M., & ALFREY, C. P. (1965). The Anemia of Human Riboflavin Deficiency. Blood, 25(4), 432-442. doi:10.1182/blood.v25.4.432.432Bosch, A. M., Abeling, N. G. G. M., IJlst, L., Knoester, H., van der Pol, W. L., Stroomer, A. E. M., … Waterham, H. R. (2010). Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. Journal of Inherited Metabolic Disease, 34(1), 159-164. doi:10.1007/s10545-010-9242-zSaid, H. M., Ortiz, A., Moyer, M. P., & Yanagawa, N. (2000). Riboflavin uptake by human-derived colonic epithelial NCM460 cells. American Journal of Physiology-Cell Physiology, 278(2), C270-C276. doi:10.1152/ajpcell.2000.278.2.c270Nakano, E., Mushtaq, S., Heath, P. R., Lee, E.-S., Bury, J. P., Riley, S. A., … Corfe, B. M. (2010). Riboflavin Depletion Impairs Cell Proliferation in Adult Human Duodenum: Identification of Potential Effectors. Digestive Diseases and Sciences, 56(4), 1007-1019. doi:10.1007/s10620-010-1374-3Li, S.-S., Xu, Y.-W., Wu, J.-Y., Tan, H.-Z., Wu, Z.-Y., Xue, Y.-J., … Xu, L.-Y. (2016). Plasma Riboflavin Level is Associated with Risk, Relapse, and Survival of Esophageal Squamous Cell Carcinoma. Nutrition and Cancer, 69(1), 21-28. doi:10.1080/01635581.2017.124789

    Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic

    Full text link
    [EN] The induction of senescence produces a stable cell cycle arrest in cancer cells, thereby inhibiting tumor growth; however, the incomplete immune cell-mediated clearance of senescent cells may favor tumor relapse, limiting the long-term anti-tumorigenic effect of such drugs. A combination of senescence induction and the elimination of senescent cells may, therefore, represent an efficient means to inhibit tumor relapse. In this study, we explored the antitumor efficacy of a combinatory senogenic and targeted senolytic therapy in an immunocompetent orthotopic mouse model of the aggressive triple negative breast cancer subtype. Following palbociclib-induced senogenesis and senolysis by treatment with nano-encapsulated senolytic agent navitoclax, we observed inhibited tumor growth, reduced metastases, and a reduction in the systemic toxicity of navitoclax. We believe that this combination treatment approach may have relevance to other senescence-inducing chemotherapeutic drugs and additional tumor types. Significance: While the application of senescence inducers represents a successful treatment strategy in breast cancer patients, some patients still relapse, perhaps due to the subsequent accumulation of senescent cells in the body that can promote tumor recurrence. We now demonstrate that a combination treatment of a senescence inducer and a senolytic nanoparticle selectively eliminates senescent cells, delays tumor growth, and reduces metastases in a mouse model of aggressive breast cancer. Collectively, our results support targeted senolysis as a new therapeutic opportunity to improve outcomes in breast cancer patients.The M.O. laboratory members thank the financial support from the Spanish Government (project SAF2017-84689-R (MINECO/AEI/FEDER, EU)) and the Generalitat Valenciana (project PROMETEO/2019/065). The R.M. laboratory members thank the financial support from the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22 (MCUI/FEDER, EU) and the Generalitat Valenciana (project PROMETEO 2018/024). Both I.G. and B.L-T. are grateful to the Generalitat Valenciana and the Spanish Ministry of Economy, respectively, for their Ph.D. grants. I.G. would like to thank I. Borreda and J. Forteza and the Instituto Valenciano de Patologia for their special collaboration and F. Sancenon for his appreciated helpGaliana, I.; Lozano-Torres, B.; Sancho, M.; Alfonso-Navarro, M.; Bernardos Bau, A.; Bisbal, V.; Serrano, M.... (2020). Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. Journal of Controlled Release. 323:624-634. https://doi.org/10.1016/j.jconrel.2020.04.045S624634323Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436-453. doi:10.1016/j.tcb.2018.02.001Acosta, J. C., & Gil, J. (2012). Senescence: a new weapon for cancer therapy. Trends in Cell Biology, 22(4), 211-219. doi:10.1016/j.tcb.2011.11.006Sieben, C. J., Sturmlechner, I., van de Sluis, B., & van Deursen, J. M. (2018). Two-Step Senescence-Focused Cancer Therapies. Trends in Cell Biology, 28(9), 723-737. doi:10.1016/j.tcb.2018.04.006Goldman, J. W., Shi, P., Reck, M., Paz-Ares, L., Koustenis, A., & Hurt, K. C. (2016). Treatment Rationale and Study Design for the JUNIPER Study: A Randomized Phase III Study of Abemaciclib With Best Supportive Care Versus Erlotinib With Best Supportive Care in Patients With Stage IV Non–Small-Cell Lung Cancer With a Detectable KRAS Mutation Whose Disease Has Progressed After Platinum-Based Chemotherapy. Clinical Lung Cancer, 17(1), 80-84. doi:10.1016/j.cllc.2015.08.003Finn, R. S., Dering, J., Conklin, D., Kalous, O., Cohen, D. J., Desai, A. J., … Slamon, D. J. (2009). PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Research, 11(5). doi:10.1186/bcr2419Geoerger, B., Bourdeaut, F., DuBois, S. G., Fischer, M., Geller, J. I., Gottardo, N. G., … Chi, S. N. (2017). A Phase I Study of the CDK4/6 Inhibitor Ribociclib (LEE011) in Pediatric Patients with Malignant Rhabdoid Tumors, Neuroblastoma, and Other Solid Tumors. Clinical Cancer Research, 23(10), 2433-2441. doi:10.1158/1078-0432.ccr-16-2898Kwapisz, D. (2017). Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Research and Treatment, 166(1), 41-54. doi:10.1007/s10549-017-4385-3Pernas, S., Tolaney, S. M., Winer, E. P., & Goel, S. (2018). CDK4/6 inhibition in breast cancer: current practice and future directions. Therapeutic Advances in Medical Oncology, 10, 175883591878645. doi:10.1177/1758835918786451Sutherland, R. L., & Musgrove, E. A. (2009). CDK inhibitors as potential breast cancer therapeutics: new evidence for enhanced efficacy in ER+disease. Breast Cancer Research, 11(6). doi:10.1186/bcr2454Beaver, J. A., Amiri-Kordestani, L., Charlab, R., Chen, W., Palmby, T., Tilley, A., … Cortazar, P. (2015). FDA Approval: Palbociclib for the Treatment of Postmenopausal Patients with Estrogen Receptor–Positive, HER2-Negative Metastatic Breast Cancer. Clinical Cancer Research, 21(21), 4760-4766. doi:10.1158/1078-0432.ccr-15-1185Chiu, J. W., Kwok, G., Yau, T., & Leung, R. (2017). Editorial to «Palbociclib and letrozole in advanced breast cancer». Translational Cancer Research, 6(S2), S376-S379. doi:10.21037/tcr.2017.03.21Traina, T., Cadoo, K., & Gucalp, A. (2014). Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer: Targets and Therapy, 123. doi:10.2147/bctt.s46725Turner, N. C., Ro, J., André, F., Loi, S., Verma, S., Iwata, H., … Cristofanilli, M. (2015). Palbociclib in Hormone-Receptor–Positive Advanced Breast Cancer. New England Journal of Medicine, 373(3), 209-219. doi:10.1056/nejmoa1505270Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S.-A., Masuda, N., … Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. The Lancet Oncology, 17(4), 425-439. doi:10.1016/s1470-2045(15)00613-0Lee, S., & Schmitt, C. A. (2019). The dynamic nature of senescence in cancer. Nature Cell Biology, 21(1), 94-101. doi:10.1038/s41556-018-0249-2Giaimo, S., & d’ Adda di Fagagna, F. (2012). Is cellular senescence an example of antagonistic pleiotropy? Aging Cell, 11(3), 378-383. doi:10.1111/j.1474-9726.2012.00807.xMuñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482-496. doi:10.1038/nrm3823Rodier, F., & Campisi, J. (2011). Four faces of cellular senescence. Journal of Cell Biology, 192(4), 547-556. doi:10.1083/jcb.201009094He, S., & Sharpless, N. E. (2017). Senescence in Health and Disease. Cell, 169(6), 1000-1011. doi:10.1016/j.cell.2017.05.015McHugh, D., & Gil, J. (2017). Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 217(1), 65-77. doi:10.1083/jcb.201708092Ewald, J. A., Desotelle, J. A., Wilding, G., & Jarrard, D. F. (2010). Therapy-Induced Senescence in Cancer. JNCI: Journal of the National Cancer Institute, 102(20), 1536-1546. doi:10.1093/jnci/djq364Gordon, R. R., & Nelson, P. S. (2012). Cellular senescence and cancer chemotherapy resistance. Drug Resistance Updates, 15(1-2), 123-131. doi:10.1016/j.drup.2012.01.002Wieland, E., Rodriguez-Vita, J., Liebler, S. S., Mogler, C., Moll, I., Herberich, S. E., … Fischer, A. (2017). Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 31(3), 355-367. doi:10.1016/j.ccell.2017.01.007Milanovic, M., Fan, D. N. Y., Belenki, D., Däbritz, J. H. M., Zhao, Z., Yu, Y., … Schmitt, C. A. (2017). Senescence-associated reprogramming promotes cancer stemness. Nature, 553(7686), 96-100. doi:10.1038/nature25167Parrinello, S., Coppe, J.-P., Krtolica, A., & Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. Journal of Cell Science, 118(3), 485-496. doi:10.1242/jcs.01635Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J., & Robbins, P. D. (2017). The Clinical Potential of Senolytic Drugs. Journal of the American Geriatrics Society, 65(10), 2297-2301. doi:10.1111/jgs.14969Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., & van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718-735. doi:10.1038/nrd.2017.116Lozano-Torres, B., Estepa-Fernández, A., Rovira, M., Orzáez, M., Serrano, M., Martínez-Máñez, R., & Sancenón, F. (2019). The chemistry of senescence. Nature Reviews Chemistry, 3(7), 426-441. doi:10.1038/s41570-019-0108-0Zhu, Y., Tchkonia, T., Fuhrmann‐Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., … Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 15(3), 428-435. doi:10.1111/acel.12445Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., … de Keizer, P. L. J. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132-147.e16. doi:10.1016/j.cell.2017.02.031Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., … Zhou, D. (2015). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78-83. doi:10.1038/nm.4010Kile, B. T. (2014). The role of apoptosis in megakaryocytes and platelets. British Journal of Haematology, 165(2), 217-226. doi:10.1111/bjh.12757Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jSu, Y.-L., & Hu, S.-H. (2018). Functional Nanoparticles for Tumor Penetration of Therapeutics. Pharmaceutics, 10(4), 193. doi:10.3390/pharmaceutics10040193Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499dKaur, P., Nagaraja, G. M., Zheng, H., Gizachew, D., Galukande, M., Krishnan, S., & Asea, A. (2012). A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer, 12(1). doi:10.1186/1471-2407-12-120Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-Negative Breast Cancer. New England Journal of Medicine, 363(20), 1938-1948. doi:10.1056/nejmra1001389Collado, M., & Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 10(1), 51-57. doi:10.1038/nrc2772Goel, S., DeCristo, M. J., Watt, A. C., BrinJones, H., Sceneay, J., Li, B. B., … Zhao, J. J. (2017). CDK4/6 inhibition triggers anti-tumour immunity. Nature, 548(7668), 471-475. doi:10.1038/nature23465Asghar, U. S., Barr, A. R., Cutts, R., Beaney, M., Babina, I., Sampath, D., … Turner, N. C. (2017). Single-Cell Dynamics Determines Response to CDK4/6 Inhibition in Triple-Negative Breast Cancer. Clinical Cancer Research, 23(18), 5561-5572. doi:10.1158/1078-0432.ccr-17-0369Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., … Hwang, E. S. (2006). Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell, 5(2), 187-195. doi:10.1111/j.1474-9726.2006.00199.xPotter, D. S., & Letai, A. (2016). To Prime, or Not to Prime: That Is the Question. Cold Spring Harbor Symposia on Quantitative Biology, 81, 131-140. doi:10.1101/sqb.2016.81.030841Billard, C. (2013). BH3 Mimetics: Status of the Field and New Developments. Molecular Cancer Therapeutics, 12(9), 1691-1700. doi:10.1158/1535-7163.mct-13-0058Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). [29] Mitochondrial membrane potential monitored by JC-1 dye. Mitochondrial Biogenesis and Genetics Part A, 406-417. doi:10.1016/0076-6879(95)60154-6Sugrue, M. M., Wang, Y., Rideout, H. J., Chalmers-Redman, R. M. E., & Tatton, W. G. (1999). Reduced Mitochondrial Membrane Potential and Altered Responsiveness of a Mitochondrial Membrane Megachannel in p53-Induced Senescence. Biochemical and Biophysical Research Communications, 261(1), 123-130. doi:10.1006/bbrc.1999.0984Wang, D., Liu, Y., Zhang, R., Zhang, F., Sui, W., Chen, L., … Ji, J. (2016). Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function. Oncotarget, 7(19), 28286-28300. doi:10.18632/oncotarget.8536Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., … Serrano, M. (2005). Senescence in premalignant tumours. Nature, 436(7051), 642-642. doi:10.1038/436642aBaker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., … van Deursen, J. M. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232-236. doi:10.1038/nature10600Jaskelioff, M., Muller, F. L., Paik, J.-H., Thomas, E., Jiang, S., Adams, A. C., … DePinho, R. A. (2010). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 469(7328), 102-106. doi:10.1038/nature09603Lehmann, M., Korfei, M., Mutze, K., Klee, S., Skronska-Wasek, W., Alsafadi, H. N., … Königshoff, M. (2017). Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosisex vivo. European Respiratory Journal, 50(2), 1602367. doi:10.1183/13993003.02367-2016Schafer, M. J., White, T. A., Iijima, K., Haak, A. J., Ligresti, G., Atkinson, E. J., … LeBrasseur, N. K. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 8(1). doi:10.1038/ncomms14532Hecker, L., Logsdon, N. J., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., … Thannickal, V. J. (2014). Reversal of Persistent Fibrosis in Aging by Targeting Nox4-Nrf2 Redox Imbalance. Science Translational Medicine, 6(231). doi:10.1126/scitranslmed.3008182Sanders, Y. Y., Liu, H., Liu, G., & Thannickal, V. J. (2015). Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radical Biology and Medicine, 79, 197-205. doi:10.1016/j.freeradbiomed.2014.12.008Soto-Gamez, A., & Demaria, M. (2017). Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 22(5), 786-795. doi:10.1016/j.drudis.2017.01.004Burd, C. E., Sorrentino, J. A., Clark, K. S., Darr, D. B., Krishnamurthy, J., Deal, A. M., … Sharpless, N. E. (2013). Monitoring Tumorigenesis and Senescence In Vivo with a p16INK4a-Luciferase Model. Cell, 152(1-2), 340-351. doi:10.1016/j.cell.2012.12.010Correia-Melo, C., & Passos, J. F. (2015). Mitochondria: Are they causal players in cellular senescence? Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(11), 1373-1379. doi:10.1016/j.bbabio.2015.05.01

    Enhanced antimicrobial activity of essential oil components immobilized on silica particles

    Full text link
    [EN] The antimicrobial activity of essential oils components (EOCs) is well-known. However, their high volatility and powerful aroma limit their application in the formulation of a wide range of food products. In this context, the antimicrobial activity of carvacrol, eugenol, thymol and vanillin grafted onto the surface of three silica supports with different morphologies, textural properties and chemical reactivities (fumed silica, amorphous silica and MCM-41) was evaluated herein. Materials characterization revealed a good immobilization yield and all the devices showed a micro-scale particle size. Sensory evaluation revealed that sensory perception of EOCs decreases after covalent immobilization. Moreover, immobilization greatly enhanced the antimicrobial activity of the essential oil components against Listeria innocua and Escherichia coli compared to free components. The incorporation of EOCs immobilized on silica particles into pasteurized milk inoculated with L. innocua demonstrated their effectiveness not only for in vitro conditions, but also in a real food system.Authors gratefully acknowledge the financial support from the Ministerio de Economia, Industria y Competitividad and FEDER funds (Projects AGL2015-70235-C2-1-R, AGL2015-70235-C2-2-R and MAT2015-64139-C4-1-R (MINECO/FEDER)) and the Generalitat Valenciana (Project PROMETEOII/2014/047). M.R.R. is grateful to the Ministerio de Education, Cultura y Deporte for her grant (AP2010-4369). The authors also thank the Electron Microscopy Service at the UPV for support.Ruiz Rico, M.; Pérez-Esteve, É.; Bernardos Bau, A.; Sancenón Galarza, F.; Martínez-Máñez, R.; Marcos Martínez, MD.; Barat Baviera, JM. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry. 233:228-236. https://doi.org/10.1016/j.foodchem.2017.04.118S22823623
    corecore