7,264 research outputs found

    Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

    Full text link
    Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark-Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of "rotational" periodic solutions that display lens-chain structures for a general NN-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure

    Bayesian hierarchical model for the prediction of football results

    Get PDF
    The problem of modelling football data has become increasingly popular in the last few years and many different models have been proposed with the aim of estimating the characteristics that bring a team to lose or win a game, or to predict the score of a particular match. We propose a Bayesian hierarchical model to fulfil both these aims and test its predictive strength based on data about the Italian Serie A 1991-1992 championship. To overcome the issue of overshrinkage produced by the Bayesian hierarchical model, we specify a more complex mixture model that results in a better fit to the observed data. We test its performance using an example of the Italian Serie A 2007-2008 championship

    Estimating the selection efficiency

    Full text link
    The measurement of the efficiency of an event selection is always an important part of the analysis of experimental data. The statistical techniques which are needed to determine the efficiency and its uncertainty are reviewed. Frequentist and Bayesian approaches are illustrated, and the problem of choosing a meaningful prior is explicitly addressed. Several practical use cases are considered, from the problem of combining different samples to complex situations in which non-unit weights or non-independent selections have been used. The Bayesian approach allows to find analytical expressions which solve even the most complicate problems, which make use of the family of Beta distributions, the conjugate priors for the binomial sampling

    Inference of gene regulatory networks and compound mode of action from time course gene expression profiles.

    No full text
    MOTIVATION: Time series expression experiments are an increasingly popular method for studying a wide range of biological systems. Here we developed an algorithm that can infer the local network of gene-gene interactions surrounding a gene of interest. This is achieved by a perturbation of the gene of interest and subsequently measuring the gene expression profiles at multiple time points. We applied this algorithm to computer simulated data and to experimental data on a nine gene network in Escherichia coli. RESULTS: In this paper we show that it is possible to recover the gene regulatory network from a time series data of gene expression following a perturbation to the cell. We show this both on simulated data and on a nine gene subnetwork part of the DNA-damage response pathway (SOS pathway) in the bacteria E. coli

    Simultaneous Border-Collision and Period-Doubling Bifurcations

    Full text link
    We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that, with sufficient non-degeneracy conditions, a locus of period-doubling bifurcations emanates non-tangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics are completely classified; in particular, we give conditions that ensure chaos.Comment: 22 pages; 5 figure

    Multiobjective Evolutionary Optimization of Type-2 Fuzzy Rule-Based Systems for Financial Data Classification

    Get PDF
    Classification techniques are becoming essential in the financial world for reducing risks and possible disasters. Managers are interested in not only high accuracy, but in interpretability and transparency as well. It is widely accepted now that the comprehension of how inputs and outputs are related to each other is crucial for taking operative and strategic decisions. Furthermore, inputs are often affected by contextual factors and characterized by a high level of uncertainty. In addition, financial data are usually highly skewed toward the majority class. With the aim of achieving high accuracies, preserving the interpretability, and managing uncertain and unbalanced data, this paper presents a novel method to deal with financial data classification by adopting type-2 fuzzy rule-based classifiers (FRBCs) generated from data by a multiobjective evolutionary algorithm (MOEA). The classifiers employ an approach, denoted as scaled dominance, for defining rule weights in such a way to help minority classes to be correctly classified. In particular, we have extended PAES-RCS, an MOEA-based approach to learn concurrently the rule and data bases of FRBCs, for managing both interval type-2 fuzzy sets and unbalanced datasets. To the best of our knowledge, this is the first work that generates type-2 FRBCs by concurrently maximizing accuracy and minimizing the number of rules and the rule length with the objective of producing interpretable models of real-world skewed and incomplete financial datasets. The rule bases are generated by exploiting a rule and condition selection (RCS) approach, which selects a reduced number of rules from a heuristically generated rule base and a reduced number of conditions for each selected rule during the evolutionary process. The weight associated with each rule is scaled by the scaled dominance approach on the fuzzy frequency of the output class, in order to give a higher weight to the minority class. As regards the data base learning, the membership function parameters of the interval type-2 fuzzy sets used in the rules are learned concurrently to the application of RCS. Unbalanced datasets are managed by using, in addition to complexity, selectivity and specificity as objectives of the MOEA rather than only the classification rate. We tested our approach, named IT2-PAES-RCS, on 11 financial datasets and compared our results with the ones obtained by the original PAES-RCS with three objectives and with and without scaled dominance, the FRBCs, fuzzy association rule-based classification model for high-dimensional dataset (FARC-HD) and fuzzy unordered rules induction algorithm (FURIA), the classical C4.5 decision tree algorithm, and its cost-sensitive version. Using nonparametric statistical tests, we will show that IT2-PAES-RCS generates FRBCs with, on average, accuracy statistically comparable with and complexity lower than the ones generated by the two versions of the original PAES-RCS. Further, the FRBCs generated by FARC-HD and FURIA and the decision trees computed by C4.5 and its cost-sensitive version, despite the highest complexity, result to be less accurate than the FRBCs generated by IT2-PAES-RCS. Finally, we will highlight how these FRBCs are easily interpretable by showing and discussing one of them

    A symbolic simulator platform for the static analysis of thin plates

    Get PDF
    The integration of symbolic capabilities into a simulation platform devoted to the analysis of thin plates can provide a greater flexibility in the learning process as it enables to incorporate, to experiment and simulate more complex and user-defined characteristics. With the present work one has built a symbolic simulator for the study of the mechanical behaviour of thin plates. These plates, with a rectangular/square basis geometric configuration, are simply supported along its four edges, and can be made from homogeneous or non-homogeneous materials. The capabilities of this platform are briefly illustrated through an illustrative case study.info:eu-repo/semantics/publishedVersio

    Harold Jeffreys's Theory of Probability Revisited

    Full text link
    Published exactly seventy years ago, Jeffreys's Theory of Probability (1939) has had a unique impact on the Bayesian community and is now considered to be one of the main classics in Bayesian Statistics as well as the initiator of the objective Bayes school. In particular, its advances on the derivation of noninformative priors as well as on the scaling of Bayes factors have had a lasting impact on the field. However, the book reflects the characteristics of the time, especially in terms of mathematical rigor. In this paper we point out the fundamental aspects of this reference work, especially the thorough coverage of testing problems and the construction of both estimation and testing noninformative priors based on functional divergences. Our major aim here is to help modern readers in navigating in this difficult text and in concentrating on passages that are still relevant today.Comment: This paper commented in: [arXiv:1001.2967], [arXiv:1001.2968], [arXiv:1001.2970], [arXiv:1001.2975], [arXiv:1001.2985], [arXiv:1001.3073]. Rejoinder in [arXiv:0909.1008]. Published in at http://dx.doi.org/10.1214/09-STS284 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quantitative Characterization of α-Synuclein Aggregation in Living Cells through Automated Microfluidics Feedback Control

    Get PDF
    Aggregation of α-synuclein and formation of inclusions are hallmarks of Parkinson's disease (PD). Aggregate formation is affected by cellular environment, but it has been studied almost exclusively in cell-free systems. We quantitatively analyzed α-synuclein inclusion formation and clearance in a yeast cell model of PD expressing either wild-type (WT) α-synuclein or the disease-associated A53T mutant from the galactose (Gal)-inducible promoter. A computer-controlled microfluidics device regulated α-synuclein in cells by means of closed-loop feedback control. We demonstrated that inclusion formation is strictly concentration dependent and that the aggregation threshold of the A53T mutant is about half of the WT α-synuclein (56%). We chemically modulated the proteasomal and autophagic pathways and demonstrated that autophagy is the main determinant of A53T α-synuclein inclusions’ clearance. In addition to proposing a technology to overcome current limitations in dynamically regulating protein expression levels, our results contribute to the biology of PD and have relevance for therapeutic applications
    • 

    corecore