171 research outputs found
Nonlinearly stable compact schemes for shock calculations
The applications of high-order, compact finite difference methods in shock calculations are discussed. The main concern is to define a local mean which will serve as a reference for introducing a local nonlinear limiting to control spurious numerical oscillations while maintaining the formal accuracy of the scheme. For scalar conservation laws, the resulting schemes can be proven total-variation stable in one space dimension and maximum-norm stable in multiple space dimensions. Numerical examples are shown to verify accuracy and stability of such schemes for problems containing shocks. These ideas can also be applied to other implicit schemes such as the continuous Galerkin finite element methods
Superconvergent interpolatory HDG methods for reaction diffusion equations I: An HDG method
In our earlier work [8], we approximated solutions of a general class of
scalar parabolic semilinear PDEs by an interpolatory hybridizable discontinuous
Galerkin (Interpolatory HDG) method. This method reduces the computational cost
compared to standard HDG since the HDG matrices are assembled once before the
time integration. Interpolatory HDG also achieves optimal convergence rates;
however, we did not observe superconvergence after an element-by-element
postprocessing. In this work, we revisit the Interpolatory HDG method for
reaction diffusion problems, and use the postprocessed approximate solution to
evaluate the nonlinear term. We prove this simple change restores the
superconvergence and keeps the computational advantages of the Interpolatory
HDG method. We present numerical results to illustrate the convergence theory
and the performance of the method
The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow
In this paper, we introduce a new class of discontinuous Galerkin methods for the Stokes equations. The main feature of these methods is that they can be implemented in an efficient way through a hybridization procedure which reduces the globally coupled unknowns to certain approximations on the element boundaries. We present four ways of hybridizing the methods, which differ by the choice of the globally coupled unknowns. Classical methods for the Stokes equations can be thought of as limiting cases of these new methods
Incompressible Finite Elements via Hybridization. Part I: The Stokes System in Two Space Dimensions
In this paper, we introduce a new and efficient way to compute exactly divergence-free velocity approximations for the Stokes equations in two space dimensions. We begin by considering a mixed method that provides an exactly divergence-free approximation of the velocity and a continuous approximation of the vorticity. We then rewrite this method solely in terms of the tangential fluid velocity and the pressure on mesh edges by means of a new hybridization technique. This novel formulation bypasses the difficult task of constructing an exactly divergence-free basis for velocity approximations. Moreover, the discrete system resulting from our method has fewer degrees of freedom than the original mixed method since the pressure and the tangential velocity variables are defined just on the mesh edges. Once these variables are computed, the velocity approximation satisfying the incompressibility condition exactly, as well as the continuous numerical approximation of the vorticity, can at once be obtained locally. Moreover, a discontinuous numerical approximation of the pressure within elements can also be obtained locally. We show how to compute the matrix system for our tangential velocity-pressure formulation on general meshes and present in full detail such computations for the lowest-order case of our method
A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations
We present a class of discontinuous Galerkin methods for the incompressible Navier-Stokes equations yielding exactly divergence-free solutions. Exact incompressibility is achieved by using divergence-conforming velocity spaces for the approximation of the velocities. The resulting methods are locally conservative, energy-stable, and optimally convergent. We present a set of numerical tests that confirm these properties. The results of this note naturally expand the work in a previous publication on Navier-Stokes equation
- …