497 research outputs found

    Measuring device Patent

    Get PDF
    Expulsion and measuring device for determining quantity of liquid in tank under conditions of weightlessnes

    Exploring Microbiome Functional Dynamics Through Space and Time with Trait-Based Theory

    Get PDF
    Microbiomes play essential roles in the health and function of animal and plant hosts and drive nutrient cycling across ecosystems. Integrating novel trait-based approaches with ecological theory can facilitate the prediction of microbial functional traits important for ecosystem functioning and health. In particular, the yield-acquisition-stress (Y-A-S) framework considers dominant microbial life history strategies across gradients of resource availability and stress. However, microbiomes are dynamic, and spatial and temporal shifts in taxonomic and trait composition can affect ecosystem functions. We posit that extending the Y-A-S framework to microbiomes during succession and across biogeographic gradients can lead to generalizable rules for how microbiomes and their functions respond to resources and stress across space, time, and diverse ecosystems. We demonstrate the potential of this framework by applying it to the microbiomes hosted by the carnivorous pitcher plant Sarracenia purpurea, which have clear successional trajectories and are distributed across a broad climatic gradient

    Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions

    Full text link
    We study the thermal conductivity, at fixed positive temperature, of a disordered lattice of harmonic oscillators, weakly coupled to each other through anharmonic potentials. The interaction is controlled by a small parameter ϵ>0\epsilon > 0. We rigorously show, in two slightly different setups, that the conductivity has a non-perturbative origin. This means that it decays to zero faster than any polynomial in ϵ\epsilon as ϵ0\epsilon\rightarrow 0. It is then argued that this result extends to a disordered chain studied by Dhar and Lebowitz, and to a classical spins chain recently investigated by Oganesyan, Pal and Huse.Comment: 21 page

    A momentum conserving model with anomalous thermal conductivity in low dimension

    Get PDF
    Anomalous large thermal conductivity has been observed numerically and experimentally in one and two dimensional systems. All explicitly solvable microscopic models proposed to date did not explain this phenomenon and there is an open debate about the role of conservation of momentum. We introduce a model whose thermal conductivity diverges in dimension 1 and 2 if momentum is conserved, while it remains finite in dimension d3d\ge 3. We consider a system of harmonic oscillators perturbed by a non-linear stochastic dynamics conserving momentum and energy. We compute explicitly the time correlation function of the energy current C_J(t)C\_J(t), and we find that it behaves, for large time, like td/2t^{-d/2} in the unpinned cases, and like td/21t^{-d/2-1} when an on site harmonic potential is present. Consequently thermal conductivity is finite if d3d\ge 3 or if an on-site potential is present, while it is infinite in the other cases. This result clarifies the role of conservation of momentum in the anomalous thermal conductivity in low dimensions

    Anomalous diffusion for a class of systems with two conserved quantities

    Get PDF
    We introduce a class of one dimensional deterministic models of energy-volume conserving interfaces. Numerical simulations show that these dynamics are genuinely super-diffusive. We then modify the dynamics by adding a conservative stochastic noise so that it becomes ergodic. System of conservation laws are derived as hydrodynamic limits of the modified dynamics. Numerical evidence shows these models are still super-diffusive. This is proven rigorously for harmonic potentials

    Characterization and Comparison of Convergence Among \u3cem\u3eCephalotus follicularis\u3c/em\u3e Pitcher Plant-Associated Communities with Those of \u3cem\u3eNepenthes\u3c/em\u3e and \u3cem\u3eSarracenia\u3c/em\u3e Found Worldwide

    Get PDF
    The Albany pitcher plant, Cephalotus follicularis, has evolved cup-shaped leaves and a carnivorous habit completely independently from other lineages of pitcher plants. It is the only species in the family Cephalotaceae and is restricted to a small region of Western Australia. Here, we used metabarcoding to characterize the bacterial and eukaryotic communities living in C. follicularis pitchers at two different sites. Bacterial and eukaryotic communities were correlated in both richness and composition; however, the factors associated with richness were not the same across bacteria and eukaryotes, with bacterial richness differing with fluid color, and eukaryotic richness differing with the concentration of DNA extracted from the fluid, a measure roughly related to biomass. For turnover in composition, the variation in both bacterial and eukaryotic communities primarily differed with fluid acidity, fluid color, and sampling site. We compared C. follicularis-associated community diversity with that of Australian Nepenthes mirabilis, as well as a global comparison of Southeast Asian Nepenthes and North American Sarracenia. Our results showed similarity in richness with communities from other pitcher plants, and specific bacterial taxa shared among all three independent lineages of pitcher plants. Overall, we saw convergence in richness and particular clades colonizing pitcher plants around the world, suggesting that these highly specialized habitats select for certain numbers and types of inhabitants

    On the Fibonacci universality classes in nonlinear fluctuating hydrodynamics

    Full text link
    We present a lattice gas model that without fine tuning of parameters is expected to exhibit the so far elusive modified Kardar-Parisi-Zhang (KPZ) universality class. To this end, we review briefly how non-linear fluctuating hydrodynamics in one dimension predicts that all dynamical universality classes in its range of applicability belong to an infinite discrete family which we call Fibonacci family since their dynamical exponents are the Kepler ratios zi=Fi+1/Fiz_i = F_{i+1}/F_{i} of neighbouring Fibonacci numbers FiF_i, including diffusion (z2=2z_2=2), KPZ (z3=3/2z_3=3/2), and the limiting ratio which is the golden mean z=(1+5)/2z_\infty=(1+\sqrt{5})/2. Then we revisit the case of two conservation laws to which the modified KPZ model belongs. We also derive criteria on the macroscopic currents to lead to other non-KPZ universality classes.Comment: 17 page

    Dynamical large deviations for a boundary driven stochastic lattice gas model with many conserved quantities

    Full text link
    We prove the dynamical large deviations for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities
    corecore