576 research outputs found
Disorder Averaging and Finite Size Scaling
We propose a new picture of the renormalization group (RG) approach in the
presence of disorder, which considers the RG trajectories of each random sample
(realization) separately instead of the usual renormalization of the averaged
free energy. The main consequence of the theory is that the average over
randomness has to be taken after finding the critical point of each
realization. To demonstrate these concepts, we study the finite-size scaling
properties of the two-dimensional random-bond Ising model. We find that most of
the previously observed finite-size corrections are due to the sample-to-sample
fluctuation of the critical temperature and scaling is more adequate in terms
of the new scaling variables.Comment: 4 pages, 6 figures include
Superconductivity and antiferromagnetism in a hard-core boson spin-1 model in two dimensions
A model of hard-core bosons and spin-1 sites with single-ion anisotropy is
proposed to approximately describe hole pairs moving in a background of
singlets and triplets with the aim of exploring the relationship between
superconductivity and antiferromagnetism. The properties of this model at zero
temperature were investigated using quantum Monte Carlo techniques. The most
important feature found is the suppression of superconductivity, as long range
coherence of preformed pairs, due to the presence of both antiferromagnetism
and excitations. Indications of charge ordered and other phases are
also discussed.Comment: One figure, one reference, adde
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work
On the Finite Size Scaling in Disordered Systems
The critical behavior of a quenched random hypercubic sample of linear size
is considered, within the ``random-'' field-theoretical mode, by
using the renormalization group method. A finite-size scaling behavior is
established and analyzed near the upper critical dimension and
some universal results are obtained. The problem of self-averaging is clarified
for different critical regimes.Comment: 21 pages, 2 figures, submitted to the Physcal Review
Two-Dimensional Quantum XY Model with Ring Exchange and External Field
We present the zero-temperature phase diagram of a square lattice quantum
spin 1/2 XY model with four-site ring exchange in a uniform external magnetic
field. Using quantum Monte Carlo techniques, we identify various quantum phase
transitions between the XY-order, striped or valence bond solid, staggered Neel
antiferromagnet and fully polarized ground states of the model. We find no
evidence for a quantum spin liquid phase.Comment: 4 pages, 4 figure
Qubits as Parafermions
Qubits are neither fermions nor bosons. A Fock space description of qubits
leads to a mapping from qubits to parafermions: particles with a hybrid
boson-fermion quantum statistics. We study this mapping in detail, and use it
to provide a classification of the algebras of operators acting on qubits.
These algebras in turn classify the universality of different classes of
physically relevant qubit-qubit interaction Hamiltonians. The mapping is
further used to elucidate the connections between qubits, bosons, and fermions.
These connections allow us to share universality results between the different
particle types. Finally, we use the mapping to study the quantum computational
power of certain anisotropic exchange Hamiltonians. In particular, we prove
that the XY model with nearest-neighbor interactions only is not
computationally universal. We also generalize previous results about universal
quantum computation with encoded qubits to codes with higher rates.Comment: 17 pages, no figures. v3: This version to appear in J. Math. Phys.,
special issue on quantum computatio
Finite-size scaling properties of random transverse-field Ising chains : Comparison between canonical and microcanonical ensembles for the disorder
The Random Transverse Field Ising Chain is the simplest disordered model
presenting a quantum phase transition at T=0. We compare analytically its
finite-size scaling properties in two different ensembles for the disorder (i)
the canonical ensemble, where the disorder variables are independent (ii) the
microcanonical ensemble, where there exists a global constraint on the disorder
variables. The observables under study are the surface magnetization, the
correlation of the two surface magnetizations, the gap and the end-to-end
spin-spin correlation for a chain of length . At criticality, each
observable decays typically as in both ensembles, but the
probability distributions of the rescaled variable are different in the two
ensembles, in particular in their asymptotic behaviors. As a consequence, the
dependence in of averaged observables differ in the two ensembles. For
instance, the correlation decays algebraically as 1/L in the canonical
ensemble, but sub-exponentially as in the microcanonical
ensemble. Off criticality, probability distributions of rescaled variables are
governed by the critical exponent in both ensembles, but the following
observables are governed by the exponent in the microcanonical
ensemble, instead of the exponent in the canonical ensemble (a) in the
disordered phase : the averaged surface magnetization, the averaged correlation
of the two surface magnetizations and the averaged end-to-end spin-spin
correlation (b) in the ordered phase : the averaged gap. In conclusion, the
measure of the rare events that dominate various averaged observables can be
very sensitive to the microcanonical constraint.Comment: 24 page
Community Support and Transition of Research to Operations for the Hurricane Weather Research and Forecasting Model
The Hurricane Weather Research and Forecasting Model (HWRF) is an operational model used to provide numerical guidance in support of tropical cyclone forecasting at the National Hurricane Center. HWRF is a complex multicomponent system, consisting of the Weather Research and Forecasting (WRF) atmospheric model coupled to the Princeton Ocean Model for Tropical Cyclones (POM-TC), a sophisticated initialization package including a data assimilation system and a set of postprocessing and vortex tracking tools. HWRF’s development is centralized at the Environmental Modeling Center of NOAA’s National Weather Service, but it incorporates contributions from a variety of scientists spread out over several governmental laboratories and academic institutions. This distributed development scenario poses significant challenges: a large number of scientists need to learn how to use the model, operational and research codes need to stay synchronized to avoid divergence, and promising new capabilities need to be tested for operational consideration. This article describes how the Developmental Testbed Center has engaged in the HWRF developmental cycle in the last three years and the services it provides to the community in using and developing HWRF
Analytical and numerical study of hardcore bosons in two dimensions
We study various properties of bosons in two dimensions interacting only via
onsite hardcore repulsion. In particular, we use the lattice spin-wave
approximation to calculate the ground state energy, the density, the condensate
density and the superfluid density in terms of the chemical potential. We also
calculate the excitation spectrum, . In addition, we performed
high precision numerical simulations using the stochastic series expansion
algorithm. We find that the spin-wave results describe extremely well the
numerical results over the {\it whole} density range . We
also compare the lattice spin-wave results with continuum results obtained by
summing the ladder diagrams at low density. We find that for
there is good agreement, and that the difference between the two methods
vanishes as for . This offers the possibility of obtaining
precise continuum results by taking the continuum limit of the spin-wave
results for all densities. Finaly, we studied numerically the finite
temperature phase transition for the entire density range and compared with low
density predictions.Comment: 10 pages, 8 figures include
Crossover and self-averaging in the two-dimensional site-diluted Ising model
Using the newly proposed probability-changing cluster (PCC) Monte Carlo
algorithm, we simulate the two-dimensional (2D) site-diluted Ising model. Since
we can tune the critical point of each random sample automatically with the PCC
algorithm, we succeed in studying the sample-dependent and the sample
average of physical quantities at each systematically. Using the
finite-size scaling (FSS) analysis for , we discuss the importance of
corrections to FSS both in the strong-dilution and weak-dilution regions. The
critical phenomena of the 2D site-diluted Ising model are shown to be
controlled by the pure fixed point. The crossover from the percolation fixed
point to the pure Ising fixed point with the system size is explicitly
demonstrated by the study of the Binder parameter. We also study the
distribution of critical temperature . Its variance shows the power-law
dependence, , and the estimate of the exponent is consistent
with the prediction of Aharony and Harris [Phys. Rev. Lett. {\bf 77}, 3700
(1996)]. Calculating the relative variance of critical magnetization at the
sample-dependent , we show that the 2D site-diluted Ising model
exhibits weak self-averaging.Comment: 6 pages including 6 eps figures, RevTeX, to appear in Phys. Rev.
- …