7,638 research outputs found

    Rigorous stability results for a Laplacian moving boundary problem with kinetic undercooling

    Get PDF
    We study the shape stability of disks moving in an external Laplacian field in two dimensions. The problem is motivated by the motion of ionization fronts in streamer-type electric breakdown. It is mathematically equivalent to the motion of a small bubble in a Hele-Shaw cell with a regularization of kinetic undercooling type, namely a mixed Dirichlet-Neumann boundary condition for the Laplacian field on the moving boundary. Using conformal mapping techniques, linear stability analysis of the uniformly translating disk is recast into a single PDE which is exactly solvable for certain values of the regularization parameter. We concentrate on the physically most interesting exactly solvable and non-trivial case. We show that the circular solutions are linearly stable against smooth initial perturbations. In the transformation of the PDE to its normal hyperbolic form, a semigroup of automorphisms of the unit disk plays a central role. It mediates the convection of perturbations to the back of the circle where they decay. Exponential convergence to the unperturbed circle occurs along a unique slow manifold as time t ! 1. Smooth temporal eigenfunctions cannot be constructed, but excluding the far back part of the circle, a discrete set of eigenfunctions does span the function space of perturbations. We believe that the observed behaviour of a convectively stabilized circle for a certain value of the regularization parameter is generic for other shapes and parameter values. Our analytical results are illustrated by figures of some typical solution

    Regularization of moving boundaries in a Laplacian field by a mixed Dirichlet-Neumann boundary condition : exact results

    Get PDF
    The dynamics of ionization fronts that generate a conducting body, are in simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically which shows that the uniformly propagating solution is linearly convectively stabl

    The equation of state with nonzero chemical potential for 2+1 flavors

    Get PDF
    We present results for the QCD equation of state with nonzero chemical potential using the Taylor expansion method with terms up to sixth order in the expansion. Our calculations are performed on asqtad 2+1 quark flavor lattices at Nt=4N_t=4.Comment: Talk given at the XXV International Symposium on Lattice Field Theory, July 30-4 August 2007, Regensburg, German

    Scaling studies of QCD with the dynamical HISQ action

    Full text link
    We study the lattice spacing dependence, or scaling, of physical quantities using the highly improved staggered quark (HISQ) action introduced by the HPQCD/UKQCD collaboration, comparing our results to similar simulations with the asqtad fermion action. Results are based on calculations with lattice spacings approximately 0.15, 0.12 and 0.09 fm, using four flavors of dynamical HISQ quarks. The strange and charm quark masses are near their physical values, and the light-quark mass is set to 0.2 times the strange-quark mass. We look at the lattice spacing dependence of hadron masses, pseudoscalar meson decay constants, and the topological susceptibility. In addition to the commonly used determination of the lattice spacing through the static quark potential, we examine a determination proposed by the HPQCD collaboration that uses the decay constant of a fictitious "unmixed s bar s" pseudoscalar meson. We find that the lattice artifacts in the HISQ simulations are much smaller than those in the asqtad simulations at the same lattice spacings and quark masses.Comment: 36 pages, 11 figures, revised version to be published. Revisions include discussion of autocorrelations and several clarification

    The locality of the fourth root of staggered fermion determinant in the interacting case

    Full text link
    The fourth root approximation in LQCD simulations with dynamical staggered fermions requires justification. We test its validity numerically in the interacting theory in a renormalization group framework.Comment: 6 pages, Talk presented at Lattice 2005 (Machines and Algorithms

    Semileptonic Decays of Heavy Mesons with the Fat Clover Action

    Full text link
    We are studying a variety of semileptonic decays of heavy-light mesons in an effort to improve the determination of the heavy-quark Standard-Model CKM matrix elements. Our fermion action is a novel, improved ``fat'' clover action that promises to reduce problems with exceptional configurations. Dynamical sea quarks are included in a mixed approach, i.e. we use staggered sea quarks and fat-clover valence quarks. Here we report preliminary results.Comment: LATTICE99(heavyqk) - 3p, 4 Postscript fig

    Rigorous stability results for a Laplacian moving boundary problem with kinetic undercooling

    Get PDF
    We study the shape stability of disks moving in an external Laplacian field in two dimensions. The problem is motivated by the motion of ionization fronts in streamer-type electric breakdown. It is mathematically equivalent to the motion of a small bubble in a Hele-Shaw cell with a regularization of kinetic undercooling type, namely a mixed Dirichlet-Neumann boundary condition for the Laplacian field on the moving boundary. Using conformal mapping techniques, linear stability analysis of the uniformly translating disk is recast into a single PDE which is exactly solvable for certain values of the regularization parameter. We concentrate on the physically most interesting exactly solvable and non-trivial case. We show that the circular solutions are linearly stable against smooth initial perturbations. In the transformation of the PDE to its normal hyperbolic form, a semigroup of automorphisms of the unit disk plays a central role. It mediates the convection of perturbations to the back of the circle where they decay. Exponential convergence to the unperturbed circle occurs along a unique slow manifold as time t ! 1. Smooth temporal eigenfunctions cannot be constructed, but excluding the far back part of the circle, a discrete set of eigenfunctions does span the function space of perturbations. We believe that the observed behaviour of a convectively stabilized circle for a certain value of the regularization parameter is generic for other shapes and parameter values. Our analytical results are illustrated by figures of some typical solution

    A Lattice Study of the Gluon Propagator in Momentum Space

    Full text link
    We consider pure glue QCD at beta=5.7, beta=6.0 and beta=6.3. We evaluate the gluon propagator both in time at zero 3-momentum and in momentum space. From the former quantity we obtain evidence for a dynamically generated effective mass, which at beta=6.0 and beta=6.3 increases with the time separation of the sources, in agreement with earlier results. The momentum space propagator G(k) provides further evidence for mass generation. In particular, at beta=6.0, for k less than 1 GeV, the propagator G(k) can be fit to a continuum formula proposed by Gribov and others, which contains a mass scale b, presumably related to the hadronization mass scale. For higher momenta Gribov's model no longer provides a good fit, as G(k) tends rather to follow an inverse power law. The results at beta=6.3 are consistent with those at beta=6.0, but only the high momentum region is accessible on this lattice. We find b in the range of three to four hundred MeV and the exponent of the inverse power law about 2.7. On the other hand, at beta=5.7 (where we can only study momenta up to 1 GeV) G(k) is best fit to a simple massive boson propagator with mass m. We argue that such a discrepancy may be related to a lack of scaling for low momenta at beta=5.7. {}From our results, the study of correlation functions in momentum space looks promising, especially because the data points in Fourier space turn out to be much less correlated than in real space.Comment: 19 pages + 12 uuencoded PostScript picture
    • …
    corecore