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Rigorous stability results for a Laplacian moving
boundary problem with kinetic undercooling

ABSTRACT

We study the shape stability of disks moving in an external Laplacian field in two dimensions.
The problem is motivated by the motion of ionization fronts in streamer-type electric breakdown.
It is mathematically equivalent to the motion of a small bubble in a Hele-Shaw cell with a
regularization of kinetic undercooling type, namely a mixed Dirichlet-Neumann boundary
condition for the Laplacian field on the moving boundary. Using conformal mapping techniques,
linear stability analysis of the uniformly translating disk is recast into a single PDE which is
exactly solvable for certain values of the regularization parameter. We concentrate on the
physically most interesting exactly solvable and non-trivial case. We show that the circular
solutions are linearly stable against smooth initial perturbations. In the transformation of the
PDE to its normal hyperbolic form, a semigroup of automorphisms of the unit disk plays a
central role. It mediates the convection of perturbations to the back of the circle where they
decay. Exponential convergence to the unperturbed circle occurs along a unique slow manifold
as time t — oo. Smooth temporal eigenfunctions cannot be constructed, but excluding the far
back part of the circle, a discrete set of eigenfunctions does span the function space of
perturbations. We believe that the observed behaviour of a convectively stabilized circle for a
certain value of the regularization parameter is generic for other shapes and parameter values.
Our analytical results are illustrated by figures of some typical solutions.
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RIGOROUS STABILITY RESULTS FOR A LAPLACIAN MOVING
BOUNDARY PROBLEM WITH KINETIC UNDERCOOLING*

UTE EBERT , BERNARD MEULENBROEK!, AND LOTHAR SCHAFER?

Abstract. We study the shape stability of disks moving in an external Laplacian field in two
dimensions. The problem is motivated by the motion of ionization fronts in streamer-type electric
breakdown. It is mathematically equivalent to the motion of a small bubble in a Hele-Shaw cell with
a regularization of kinetic undercooling type, namely a mixed Dirichlet-Neumann boundary condition
for the Laplacian field on the moving boundary. Using conformal mapping techniques, linear stability
analysis of the uniformly translating disk is recast into a single PDE which is exactly solvable for
certain values of the regularization parameter. We concentrate on the physically most interesting
exactly solvable and non-trivial case. We show that the circular solutions are linearly stable against
smooth initial perturbations. In the transformation of the PDE to its normal hyperbolic form,
a semigroup of automorphisms of the unit disk plays a central role. It mediates the convection of
perturbations to the back of the circle where they decay. Exponential convergence to the unperturbed
circle occurs along a unique slow manifold as time t — co. Smooth temporal eigenfunctions cannot
be constructed, but excluding the far back part of the circle, a discrete set of eigenfunctions does
span the function space of perturbations. We believe that the observed behaviour of a convectively
stabilized circle for a certain value of the regularization parameter is generic for other shapes and
parameter values. Our analytical results are illustrated by figures of some typical solutions.

Key words. moving boundaries, kinetic undercooling, Laplacian growth, streamer discharges,
convective stabilization

AMS subject classifications. 37115, 37L25, 76D27, 80A22, 78 A20

1. Introduction.

1.1. Problem formulation in physical and mathematical context. The
mathematical model considered in this paper is motivated by the physics of electric
breakdown of simple gases like nitrogen or argon [1, 2, 3, 4, 5]. During the initial
‘streamer’ phase of spark formation, a weakly ionized region extends in a strong
externally applied electric field. As the ionized clphd]ifleldcEtically conducting, it
screens the electric field from its interior by forming a thin surface charge layer.
This charged layer moves by electron drift within the local electric field and creates
additional ionization, i.e., additional electron—ion—pairs, by collisions of fast electrons
with neutral molecules. We here approximate the ionized and hence conducting bulk
of the streamer as equipotential. In the non-ionized and hence electrically neutral
region outside the streamer, the electric field obeys the Laplace equation. The thin
surface charge layer can be approximated as an interface which moves according to
the electric field extrapolated from the neutral region onto the interface. We therefore
are concerned with a typical moving boundary problem.

Such moving boundary problems occur in various branches of physics, chemistry
or biology. The most extensively studied examples are viscous fingering observed in
two-fluid flows [6] or the Stefan problem of solidification from an undercooled melt [7].
Other physical phenomena like the motion of voids in current carrying metal films [8]
lead to similar filathematical models [9].

We here discuss the streamer model in two spatial dimensions, where in the
simplest ‘unregularized’ version the bdsic equations coincide with those describing the

*The work of B.M. was supported by a Ph.D. position from CWI Amsterdam.

TU.E. and B.M. work at CWI, P.O.Box 94079, 1090GB Amsterdam, The Netherlands. U.E. also
holds a parttime appointment at Eindhoven Univ. Techn., The Netherlands.

t1.S. works at Universitit Duisburg—Essen, Universitétsstr. 5, 45117 Essen, Germany.
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2 U. Ebert, B. Meulenbroek and L. Schéfer

motion of a small bubble in a liquid streaming through a Hele-Shaw cell [10, 11, 12, 13],
which is a special case of two fluid flow. The unregularized streamer model has
been discussed in Ref. [4, 14]. Restriction to two dimensions in spacg allows 15 to
use standard conformal mapping techniques [6, 15] to reduce the moving boundary
problem to the analysis [of fht time dependence of the conformal map that maps the
unit disk to the exterior of the streamer.

It is well known that unregularized moving boundary problems of this type are
mathematically ill posed [15], in the sense that the moving interface generically de-
velops cusps within finite time which leads to a breakdown of the model. To suppress
such unphysical behavior, fi¢ models are regularized by imposing nontrivial boundary
conditions on the interface. For viscous fingering typically some curvature correction
to the interfacial energy is considered. For the streamer problem a mixed Dirichlet-
Neumann boundary condition can be derived [14, 16] by analyzing the variation of the
electric potential across the screening layer. Such a boundary condition is well known
from the Stefan problem, where it is termed ‘Kinieficl undercooling’. It rarely has been
considered for Hele-Shaw type problems. There are strong hints [15, 17, 18, 19] but
no clear proof that it suppresses cusp formation.

1.2. Overview over main results and structure of the paper. Regulariza-
tion of the streamer model introduces some parameter ¢ that measures the effective
width of the interface relative to the typical size of the ionized region. The regularized
problem allows for a class of solutions of the form of uniformly translating circles, and
linear stability analysis of these solutions can be reduced to solving a single partial
differential equation. For the special case € = 1, the general solution of this PDE can
be found analytically, as we discussed in [14].

In the present paper we discuss the special case ¢ = 1 in much more detail
since the results show interesting and piroDably generic features. In particular, we
find that the dynamics of infinitesimal perturbations are governed by a subgroup
of the automorphisms of the unit disk. Generically, these automorphisms convect
the perturbations to the back of the moving body. Initially, perturbations might
grow, but asymptotically for time ¢ — oo, they decay exponentially. Furthermore,
this final convergence back to the unperturbed circle follows some universal slow
manifold. Also a finite perturbation evolving under the linearized dynamics shows this
behaviour, provided the initial perturbation obeys some simple bound. The subgroup
of automorphisms leading to convective stabilization also governs the dynamics in
another exactly solvable case: ¢ = oo, and since it for all € > 0 is intimately related
to the characteristic curves of the PDE, we expect convective stabilization to hold
generally for e > 0.

Analyzing the time evolution determined by a PDE, one often searches for eigen-
functions showing purely exponential time behaviour. For the present problem in a
space of functions representing smooth initial perturbations of the moving circle, no
such eigenfunctions exist. They can only be constructed if we allow for singularities on
the boundary. Nevertheless a subset of these functions with time dependence e™"7,
n € Ny, is intimately related to the asymptotic convergence of the perturbations.
Furthermore, in some restricted sense, it forms a complete set in function space.

This paper is organized as follows. In Sect. 2 we introduce the model, and the
linear stability analysis of translating circles is carried through in Sect. 3. These two
sections are extended versions of Ref. [14], wher¢lalso a short account of results for
the case of ¢ = 1 has been presented. The detailed discussion of this q@ke of strong
screening is the topic of this paper. Amdlytical results based on the PDE of linear
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F1c. 2.1. Geometry of the streamer model, E is the constant far field.

stability analysis are derived in Sect. 4, and explicit examples are presented in Sect. 5.
Sect. 6 summarizes our conclusions. The appendix contains a discussion of another
rigorously solvable case, namely € = Bp. O

We finally should note that in a true electrical discharge the typical streamer is
an elongated object frequently connected to an electrode, rather than an uniformly
translating closed body. Thus the uniformly translating circles, which form the basis
of our analysis, are somewhat unphysical, in particular with respect to the physics at
their backside. We nevertheless for shortness will adress these solutions as ‘streamer’,
being well aware that this is a slight abuse of this term.

2. Physical model and conformal mapping approach.

2.1. The model. We assume the ionized bulk of the streamer to be a compact,
simply connected domain D; of the (z,y)-plane. Outside the streamer, i.e. in the
open domain D,,, there are no charges and the electric potential obeys the Laplace
equation

(2.1) Ap=0 for (x,y) € Dp.

The streamer moves in an external electric field that becomes homogeneous far from
the ionized body; therefore the electric potential ¢ at infinity obeys the boundary
condition

2.2 — Egx + const  for v/x2 + 42 — 00.
¥ Y

This equation excludes a contribution to ¢ diverging as In(z? + y?) which implies that
the total charge due to electrons and ions vanishes within D; and that the far field
has the form

E=—-Vy— —Ex%,

where X is the unit vector in z-direction. On the surface of the streamer we impose
the boundary condition

(2.3) p={¢n-Vop,

where n is the unit vector normal to the surface pointing into D,,. Here as well in
Eq. (2.4) below it is understood that the surface is approached from D,,. As mentioned

-



4 U. Ebert, B. Meulenbroek and L. Schéfer

in the introduction, this boundary condition results from the analysis of the variation
of the potential across the interface, and the length parameter ¢ can be interpreted
as the effective thickness of the screening layer. The case £ = 0 corresponds to the
unregularized case with a pure Dirichlet condition on the moving boundary. Dynamics
is introduced via the relation

(2.4) vp =NV,

which holds on the boundary and determines its normal velocity v,,. This defines our
model. For further discussion of its physical background, we refer to [1, 2, 3, 4, 5].

Now obviously, Ey can be absorbed into a rescaling of the potential ¢ and of the
time scale inherent in the velocity vy, therefore henceforth we take Hj 5 [ [QlEhrly
the model defined here is most similar to a model of the motion of a small bubble in
a Hele-Shaw cell [11, 12], except that the boundary condition (2.3) is of the form of
a kinetic undercooling condition [17, 18].

2.2. Conformral-mapping. A standard approach to suQmoving boundary
problems proceeds by conformal tmapping [6, 14]. We identify the (x,y)-plane with
the closed complex plane z = x+iy, and we define a conformal map f(w,t) that maps
the unit disk U, in the w-plane to D,, in thé E=plane, with w = 0 being mapped on
z =00

a,l(t) ~

(2.5) z= flw,t) = » + f(w,t), a_1(t) > 0.

By virtue of Eq. (2.1), the potential ¢ restricted to D,, is a harmonic function, there-
fore it is the real part of some analytic function ®(z), which under the conformal map
(2.5) transforms itg

26 d(w,t) = d (f(w, b)) = at) | d(w,t).

w

The pole results from the boundary condition (2.2) with Ey = 1. The functions f and
d are holomorphic for w € U,,, and we assume that the derivatives 9] of all orders
n exist on the unit circle OU,. This restricts[oul analysis to smooth boundaries of
the streamer. (Weaker assumptions on boundary behavior briefly will be discussed in
Sect. 4.8.) Conditions (2.3) and (2.4) take the form

2.7 lw@zHj| R[®|=14 R[wi,®] for w € U,

(2.8)

R [ O ] _ R[wd.9] for w € OU,,.

wiof | |wd.fI?

Egs. (2.5) — (2.8) form the starting point of our analysis.

O 3
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3. Linear stability analysis of translating circles.

3.1. Uniformly translating circles. A simple solution of Egs. (2.7), (2.8)
takes the form

3
R 2R
0 _ R, 2R
FOw, ) w TRyl
(3:1) 1 R—¢
o) = —_ - - )
(w,1) R[w R+£w]

In physical coordinates x and y, it describes circles of radius R > 0 centered at
x(t) = vot and moving with velocity vog = 2R/(R + ¢) in direction x. Thus the point
w = 1 maps to a point at the front and the point w = —1 maps to a point at the back
of the streamer. These points will play a crucial role in our analysis.

We note that the one-parameter family (3.1) of solutions parametrized by R, that
is found in the regularized model, is a subset of the two-parameter family found in
the unregularized case £ = 0. As is well knpwh, for £ = 0 all ellipses with one axis
parallel to X are uniformly translating solutions [10].

3.2. Derivation of the operator L. for linear stability analysis. We now
derive the equation governing the evolution of infinitesimal perturbations of the circles
(3.1). In general, the parameter R can become time dependent. We use the ansatz

- flw,t) = $+x(t)+nﬁ(w,t),
(3.2) Bot) = RO |3 - pope )]
d(t) = %, R(t) > 0,

where 7 is a small parameter. However, working to first order in 7 it is found that R
stays constant. This results from the fact that the dynamics embodied in Eq. (2.8)
strictly conserves the area |D;| of the streamer, which in this context is the equivalent
to the temporal conservation of the zero order Richardson moment [13, 15, 20],[buk
integrated over the complement of D,,. In terms of the mapping f, the conserved area
"Di’ can be written as

2m
D = | [ da (R [, )] ~ 2(t)) 0,3 [7 (e )]
’ 2
(3.3) = TR3(t) — 772/da R [ﬁ(em, )] 0. [ﬁ(em, )] .
0

Now introducing the time independent length Ry through ‘@i’ = 7R2, we find R(t) =
Ro+0O(n?), which proves that R is time independent within linear perturbation theory.
In the sequel we will use Ry as our length scale, introducing

12 2t
(34) ¢ Ry a ’ 1+eRy’
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and rescaling f and ® by factors 1/Ry. We note that within the dimensionless time
intervall A7 = 1, the streamer moves a distance of the order of its size.

With the thus simplified ansatz (3.2), Egs. (2.7) and (2.8) evaluated to first order
in n take the form

l4e — — —
R |w(@d, — 0:)f — ——wd,x| =0,
(3.5) ( ) 2 X for w € OU,,.

R [e(w? + DwduB — (1+€)(1 + ewdy)x] =0,

Since § and x are holomorphic for w € U,,, these equations imply

w(0, —0:)3 — 1+ ewﬁwx =0,
(3.6) 2 for w € U,,

e(w? + DNwd,f — (1 +€)(1 + ewd,)x = ia,
where a is some real constant. Elimination of y yields
(3.7) LpB=0,

where L. is the operator

(3.8) Lo = ; B (W2 — 1w By + € WOy + (1 +€) Oy — 0., .

3.3. Normal form of £, and induced automorphisms of the unit disk. It
is instructive to transform L. to the normal form of a hyperbolic differential operator.
We introduce

(3.9) T = tanh% ,

mapping the time interval 7 € [0, 00[ to T € [0, 1[, and

w+T
(3.10) ¢= 1T’
to find
(3.11) Le =¢h(¢,T)0r0: + %6@ +(1+e¢)or,
w7 -T9)
(3.12) h¢,T) = (,)C—w =TT

This identifies the manifolds T' = const or {( = const as the characteristic manifolds
of our problem for all € # 0.

As function of the ‘time-like’ parameter T, 0 < T' < 1, the transformation { =
¢(w,T) in Eq. (3.10) represents a semigroup of automorphisms of the unit disk, with
fixed points

— (=w==l1.

For T'—1, corresponding to 7—o0, all points w # —1 are mapped into { = +1, so
that the large time behavior of any perturbation is governed by this attractive fixed
point.
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3.4. Analytical solutions of Eq. (3.7) for special values of ¢. The general
solution of Eq. (3.7) can be found analytically for the special values ¢ = 0, ¢ = +1
and € = co. In the unregularized case e =[0U_pvidently any function

= Bw,7) = Blw +7)

is a solution, and any singularity of B found in the strip
0<Rw]<oo, —-1<Jw]<1

will lead to a breakdown of perturbation theory within finite time. This is the finger-
print of the ill-posedness of the problem for € = 0.

For e = —1, B(w,7) generically for all 7 > 0 has a logarithmic singularity at
w = —=T(7). We recall that negative values of e = ¢/ Ry imply negative thickness of
the screening layer and thus are of no physical interest.

The case € = +1 is discussed in detail in the remainder of the paper. Though
a regularization length ¢ identical to the object size Ry is somewhat artificial, it is
accessible to rigorous analytical treatment and we expect it to reveal generic features
of the behavior for € > 0.

This is supported by the results for ¢ = oo which show essentially the same
features as the results for € = 1 below. Though the limit € — oo is physically absurd
when applied to streamers, it is worth studying with respect to the properties of the
operator L., and we present a short discussion in the appendix.

4. Strong screening: analytical results for ¢ = 1.

4.1. Analytical solution of the general initial value problem. With the
form (3.11) of L, the PDE (3.7) for € = 1 reduces to

(41) = pry( 2+ h(G,T)O ) B =0,
showing that the function
(4.2) G(¢) = (2+h((.T)o) B

is independent of T'. To determine (3, we use Eq. (3.12): h(¢,T) = w/0cw to find
(4.3 (24+00,) o) =GO, =g, T(7)).

The solution regular at w = 0 takes the form

m B(W,T>/w:cd:cG<:r+T(7')>'
0

w? 1+ 2T(7)

A second independent solution is singular in w = 0:

1
(4.5) Bsing (w, T) = el

The function G in the regular solution (4.4) is determined by the initial condition
B(w,0) through

(4.6) Gw) = (2 +,) Blw, 0).

It thus is holomorphic for w in the unit disk ¢, and all derivatives exist on OlU,,, since
we assume the initial surface to be smooth. Eq. (4.4) then shows that 3(w, 7) inherits
these properties for all 7 < co.

-
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4.2. Automorphism of unit disk and a bound on the perturbation. It
is now clear that the automorphisms ((w,T') of U, from Eq. (3.12) contain the basic
dynamics and, as shown in the appendix, this also holds for € = co. This is to be con-
trasted to the unregularized case ¢ = 0, where the dynamics afictnts to a translation
of the unit disk. With the present dynamics, in the course of time larger and larger
parts U(9) of the unit disk U, are mapped to an arbitrarily small neighbourhood
|¢ — 1| < d of the attractive fixed point ( = 1. According to Eqs. (4.4) and (4.6),
the initial condition in the neighbourhood |w — 1| < § then determines the evolution
of B(w,7) in all U(4). As a consequence, any pronounced structure[foind inifially
near wo, |wo — 1| > 4, is convected towards w = —1. Quantitatively this behavior is
embodied in Eq. (4.17) below, and explicit examples will be presented in section 5,
see, in particular, figure 5.4b.

For the furthefdigcussion we normalize G(w) so that (|
c
(4.7) ‘m‘ax Gw)=1.
w|=1

Egs. (4.4), (4.7) yield a bound on B(w, 7):

(4.8) 3 3 1Bw, 7)< =; Jw/ <1, 0<T<1,

N~

Thus the perturbation can shift the position of the streamer at most by 71/2, and
therefore it cannot affect the asymptotic velocity of the propagation.

4.3. Center of mass motion for 0 < 7 < oco. In precise terms the position of
the streamer can be defined as the center of mass

1
(4.9) Zem = Tem T+ 1Yem = ﬁ /diE dy (z +1y),
4 b

where the integral is related to the first order Richardson moment. Evaluating
Egs. (4.9) and (4.4), we find to first order in 7

(410)D | Zcm :T+776(0a7-)’

G(T
(4.11) 80,7) = G 2(7» .
Here 7 is the uniform translation of the unperturbed circle. The additional center
of mass motion (4.11) for all times is explicitly given by the initial condition §(w,0)

through Eq. (4.6) and the transformed time variable T'(7) from Eq. (3.9); for 7 — oo,
it approaches 3(@—T— G(1)/2.

4.4. IntQal motion: convergence along a universal slomnanifold for
7 — 00. We now concentrate on the perturbation of the circular shape, given by

(4.12) B(w,7) = Blw,7) = B(0, 7).

The explicit expression

(4.13) B, ) = / dp p [G (%) - G(T)}
0
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yields
(4.14) lim B(w,7) =0

T—00

for arbitrary G, i.e. for arbitrary initial condition (4.6). Thus the shape perturbation
converges to zero as 7 — 00, and the circular shape is linearly stable.

We note that this holds despite the fact that tiefimits w — —1 and 7 — oo, (i.e.
T — 1), do not commute

lim lim G({(w,T))=G(-1),

T—1w——1
lim lim G(((w,T)) = G(+1).

w——1T—1

This peculiar behavior near the backside of the streamer, at w = —1, shows up only
in the rate of convergence.

Investigating the rate of convergence for 7 — oo, we first exclude a neighborhood
of w = —1 and expand G in the integral (4.13) as

G (%) =G(T) + (1 — % G'(T)+0(1 -T2,
where G’ (w) = 9,G(w).
With
1-T%=4de "+ 0(e?7),
the integral yields
Blw,T) 4 2

(4.15) &) = In(l+w)—w+ % e T +0(e?),
valid for
1+ w|> |wle™™.
Thus outside the immediate neighborhood of w = —1, the shape for all smooth initial

conditions with G’(1) # 0 convergences exponentially in time as e~7 along a universal
path in function space, given in Eq. (4.15). For G'(1) = 0 the first non-vanishing term
in the expansion of G dominates the convergence.

To analyze the neighbourhood —1 we take the limit 7 — oo, with

(4.16) s=(14w)e"
fixed. We find

B(W,T) B .,

G 4(In(2+s)—71)e

+{2G’(1) 44l (218) (G’ (le) - G’(l))

4/(2+4s) _
+(2+s)(G(1)—G<S_2))—4 / dymyG”(l_y)};’(;)
0

s+2

(4.17) +0 (re7?7) .
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In terms of w, the first contribution on the r.h.s. takes the form
4(In2+s)—7)e " =4e "In(2e 7 +1+w),

which shows that a logarithmic cut of B(w, 7) reaches w = —1 for 7 — oo, but with a
prefactor vanishing exponentially in that limit. We thus have found a week anomaly
of the asymptotic relaxation near w = —1: In a spatial neighborhood of order e™" the
exponential relaxation is modified by a factor 7. Furthermore, as mentioned above,
all the initial structure of 3(w, 0) is compressed into that region. This is obvious from

the occurence of G (;—g) etc., in Eq. (4.17).

To summarize, we have found that the shape of the interface for 7 — oo converges
to the circle along a universal slow mailifald (4.15), except for a weak anomaly (4.17)
at the backside at w = —1.

4.5. (Non-)analyticity of temporal Enfunctions. In many cases, Ql
dynamical solution for arbitrary initial values cannot be found, and rather temporal
eigenfunctions are searched for. However, in the present problem, functions S(w, )
resulting from smooth initial conditions cannot exhibit exponential behavior in time
for all 7, 0 < 7 < oo. This is seen easily by introducing

(4.18) G(x) :GCZ;D

writing G(¢) in the equivialent form

w+T A fw—1
4.19 G =G -
(4.19) (1+WT) (erle )
and substituting this form into Eq. (4.4). Postulating strict exponential time behavior
3 ~ e~ one finds

- 1 I\
W) o & By(w), W) = i
(4.20) Bw, ) RCHRENC) O/dpp< )

Any eigenfunction 8)(w,0) with A # 0 clearly is singular either at w = +1, or at
w = —1, or at both points. It therefore conflicts with smooth initial conditions. On
the other hand, omitting a neighbourhood of w = —1, eigenfunctions exist for all
—X € Npy.

4.6. Completeness of the eigenfunctions near w = 1. In some neighborhood
of w = 1, we even can show that any regular solution 8(w, 7) can be expanded in terms
of the ‘eigenfunctions’ G_,(w), n € Ny. This results from the Taylor expansion

(4.21) G = gy,
n=0

which by assumption converges in a disk of radius # > 0: Rewriting Eq. (4.4) as

Ly dx z+T Ly dx z+T
Blw,m) = 0 w? G<1+:ET) v w2 G<1+:ET>

M) .y [fade (1—2\"
(4.22) w2 —Zgne /w w? <1+:17)

n=0
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and f_,(w) in a similar form as

M, Yode (1—2\"
428) =g [ (1)
we find
M(T > M, _
(4.24) B(w, ) = w(g ) + Zgn |:ﬁ—n(w) - F:| c
n=0

Provided e~ < 7, we can separate the sum into the contribution o 1/w? and the rest.
Since both B(w,7) and the S_,(w) are regular at w = 0, the contributions o 1/w?
have to cancel, which yields the final result

(4.25) Blw,T) = Z n Bon(w) e ™.
n=0
This result is valid for e=™ < 7 in the disk
‘ 1—w| ., .
e <r.
1+w

It generalizes the asymptotic result (4.15) and shows that the f_,(w) in some sense
form a complete set.

Indeed, the universal shape relagatign found in (4.15) together with the center
of mass relaxation (4.11) precisely follow the slowest eigenfunction from (4.21) with

A= —n=—1. —

4.7. Intermed@ temporal growth and coupling of Fouriegodes.
Having found that the space of regular functions does not allow for strictly exponential
time behavior, we now consider the typical time variation of smooth perturbations.
Before the exponential relaxation sets in, such perturbations typically will grow, and

this growth can be quite dramatic. As an illustration we consider a perturbation
defined by

Gw)=wr, Ek>1,

corresponding to initial conditions

k

(4.26) B.0) =

For T'=1— e~%/k, corresponding to times 7 = 6 + In(2k) + O(1/k), we can write

—0 k
w+T 1- o7 ol -w 1
G < > = <7+“; =exp|—e '——|(14+0O| -~
we 1 ’
1+ wT 1— e 1+w k
where we again excluded some neighborhood of w = —1. Substituting this expression
into Eq. (4.13) we find on the unit circle w = e’*:

(4.27) &a 7)

1

_o1—p? —2ipsina 1 _ 1

=[d —e7f - = - +0(=).
/ppexp{ c 1+p2+2pcosoz] QQXP[ € }—i_ (k)
0
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B(1,7)

0.2

6 -4 -2 2 4 9

Fic. 4.1. B(e',7) from Eq. (4.27) for oo =0 as a function of subtracted time § = 7 — In 2k.

Figure 4.1 shows this fu@n, evaluated at & = 0 (w = 1). The behavior is quite
peculiar. Up to times of order Ink the perturbation stays of order 1/k < 1, then it
increases rdighly exponentially up to values of order 1, and finally it decreases again
exponentially, approaching the slow manifold (4.15). Thus for very large k the initial
perturbation #(w,0) ~ 1/k in some time interval can be amplified by a factor of order
k, and Eq. (4.27) shows that the leading behav[or ih that time interval is independent
of k.

Closer fmalysis shows that in terms of a formal Fourier expansion

(4.28) Ble,r) = an(r)e™,

the amplification is carried by the low modes, n = O(1). As will be illustrated by an
explicit example below, cf. figure 5.2b, in such a mode representation the time evo-
lution feeds the strength of the perturbation sucessively into lower and lower modes.
This is equivalent to the observatfon] that the automorphism e!® — ((e!®,T) drives
all the perturbative structure towards o = 7w and smoothens the remainder of the
interface. Note, however, that starting with a perturbation ~ w” in the course of
time also modes n > k are (weakly) populated to build up a complicated structure
near w = —1. We recall that for the unregularized model € = 0, the time evolution of
a perturbation oc w* populates only modes k < n [4].

4.8. Motion of the zeros of 0, f and cusps. So far we have shown that the
propagating circle is linearily stable, i.e., we implititly considered perturbations of
infinitesimal strength 7. The full nonlinear evolution of a finite perturbation is beyond
the scope of this paper. Still, it clearly is a question of practical interest, whether a
finite perturbation evolving under the linearized dynamics, for all times satisfies the
assumptions underlying the conformal mapping approach. For the mapping to stay
conformal, all the zeros of 9, f(w,T) must stay outside the unit circle. We thus here
analyze the roots of the equation

(129) 0= 0uf(w,7) = = +1 05w, 7).

Using Egs. (4.3), (4.4), we can rewrite this equation as

(4.30) — %]jdpp[G<W+T)—G<M)]:l,

1+wT 1+ pwT w
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With our normalization (4.7) of G, for all w in the closed unit disk the Lh.s. of this
equation is bounded by 2|n|. We conclude that the bound

Cc 1
(4.31) nl <5

guarantees that within the framework of first order perturbation theory the mapping
stays conformal for all times. To get some feeling for this estimate we note that for
G(w) = w* the map initially (for 7 = 0) is conformal provided || < 14 2/k. Thus the
bound (4.31) is quite strong. We now will show that in general it cannot be improved.

For 7 — oo, zeros of 9, f(w, T) reach w = —1, which is a consequence of the fact
that in [is]imit an infinitesimally small neighborhood of w = —1 under the mapping
w — ( is mapped essentially on the whole complex plane. We now analyze this limit
for the simple example G(w) = w. Substituting this form into the asymptotic behavior
(4.17) and using the definition (4.16) of s, we find

I Y rewm 2%5 +O(reT).

Eq. (4.29) reduces to s = 4n — 2, showing that a zero wy of 9, f(w, ) approaches
w=—1as

—
wo=—-14(4n—2)e"".

For wg to come from outside the unit circle we clearly must have
(4.32) Rin] <

In all the discussion of this section we have assumed the initial boundary to be
smooth, so that all derivatives 9" G(w) exist on the boundary |w| = 1. Inspecting the
results it is obvious that this assumption can be considerably relaxed, since only those
derivatives which show up explicitly, have to exist. Thus, for exponential relaxation
(4.15) outside the neigborhood of w = —1 to prevail, the existence of J,G(w) is
sufficient, which amounts to the condition that the curvature of the initial boundary
iEwall defined. For the circle to be linearly stable, Eq. (4.14), it is sufficient that G(ei®)
is bounded and continuous, which implies that the boundary has a well defined slope.

If the initial boundary shows a cusp, the time efolifion sensitively depends on
the details. If the cusp is found in forward direction, so that G(w) diverges for
w — 1, the streamer will be strongly accelerated. In a related model [12], such an
effect has been pointed out before. Furthermore the shape will not relax to a circle,
and the conformal map will presumably break down at finite time. If tli€]cusp does
not affect the analyticity of G(w) near w = 1, it is convected towards the back and
broadened, whereas the front of the streamer approaches the circular shape. Still,
however, conformality of the map may break down at finite time.
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T=0
=0 Inb5
2 24+ 1Inb5
4 4+1nb5

F1G. 5.1. Snapshots of the evolution of the streamer for k =2 (left column) and k = 10 (right
column) at the indicated instants of time. The solid lines represent the perturbed interfaces. The
gray disks move with the center of mass velocity (5.4) of the perturbed circles. One gray disk has
been omitted for clarity. See the text for further discussion.

-

5. Explicit examples for ¢ = 1. We here illustrate the general results by some
examples.

5.1. The evolution of Fourier perturbations. We first consider perturba-

tions of the form
(5.1) B0 = 2 e Glw) =t
. w, = k+27 1.€. W) =w .

The integral (4.4) is easily evaluated to yield

B (w, 1) = 51211“2 {T’“Jr ((Tw)*-1) ¢*

1+k+T?(1-k)

+k (1-T7) T

TF—(wT+1)¢F +

1

e
|
~
S

1

N
Il

o)

3

(5.2) : <1n(1+wT) -
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where T' = T'(7) and ¢ = ((w,T(7)) are given by Egs. (3.9), or (3.10), respectively.
In figure 5.1 we have plotted snapshots of the resulting motion of the interface, de-
termined as 3 —

- 1
(5.3) z:x—i—iy:;—l—T—i—nﬁ[k](w,T), w=¢e 0<a<2r.

The direction of motion, i.e. the positive z-direction, is downwards. Together with
the moving interface we show the unperturbed circular streamer at different times as
gray disks with the center moving according to
(5.4) em(T) =T+ g G(T(r)) =7+ g tanh® g ,
as predicted for the center of mass motion for the perturbed streamer in Eq. (4.10).
In figure 5.1 we perturbed the circle by n 8¥1, k = 2 or k = 10, using the same
parameter = 0.6¢“/4 in both cases. The starting position for k = 10 is Emlted
relative to thETffor £ = 2 by a distance corresponding to A7 = In5. As discussed
below Eq. (4.27), for 1 < k1 < ko we expect

— 5[1@1] (w, 7—) ~ 6[162](0)7 T+ ln(kz/kl))

Figure 5.1 illustrates that such a ‘universality’ for the gross structure holds down to
very small k. (Of course the choice of differing values of  would distort the figures
and masKthis feature.) Basically during time evolution the initial maximum closest to
the forward direction is smeared out and builds up the asymptotic circle, whereas all
other structures are compressed at the backside. For k& = 10 the complicated structure
at the back is magnified in figure 5.2a. Figure 5.2b shows the time dependence of the
coefficients a,, of the low modes €® in the expansion (4.28), again for k = 10. It
illustrates how the strength of the[petturbation[cagcades downwards in n and increases
in time, until it completely is absorbed into the lowest mgde] i.e., the overall shift of
the circle. We should recall, however, that also modes n > k are weakly populated to
build up the structure at the back.

For k = 2, figure 5.3 shows the motion of the zeros of 9, f (w, 7) in the complex w-
plane, as discussed in section 4.8. It corresponds to the & = 2 part of figure 5.1. Two
zeros, which initially [@Tq close to the backside of the unit circle, for 7 — oo approach
w = —1. They clearly are gssdciated with the two maxima that in the fomhoving
frame are convected towards z = x 4 1y = —1. The third zero, originally found close
to w = 41, after a large excursion leaves the physical sheet at time 7 ~ 2.51. The
logarithmic cut is on the negative axes, with the branchpoint wy, = —1/7(7) reaching
w=—1 for 7 — o0.

5.2. The evolution of localized perturbations. We finally consider some

more localized perturbation, defined by

1— Ta
(5.5) Gy = L2070 s,
w — yeio

corresponding to an initial perturbation

w2

(5.6) 7 B(w,0) =7 (1_7’7),7 e2ico |:1n (1 v e—iao> W e—iao] .
Y Y
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T=1

o T -1.1 -1.05 -1 b)

F1G. 5.2. a) Magnified plot of the backside of the streamer for k =10, n = 0.6 eim/4 (as in the
right column of figure 5.1) for the T values given. The overall motion is subtracted. We observe the
compression of the fine structure and the intermediate growth of the perturbation. Asymptotically
for T — oo, the strucgtrj converges to the gray circle. In the comoving frame, the gray dot marks
z + iy = —1 which is point to which the structure finally is contracted. Note that the scale of x
is stretched compared to that of y, and that the figure is turned relative to figure 5.1.

b) The amplitudes an as in Eq. (4.28) as a function of T for k = 10; the values of n are given.

c

F1a. 5.3. Motion of the zeros of Ou f in the w-plane for k =2 and n = 0.6 ein/4 (as in the left
column of figure 5.1). The dots give the position for T =0, 1, 2. The horizontal line is the cut for
T = 2.51, where one zero enters the second sheet (broken curve). The unit disk is also shown.

-
The result for B(w, 7) reads

(v — e { T(r)
~ve~to —T(1) | 2b(7)

(5.7) Blw,7) =

where

11— T (7)yetvo

(5.8) b(T) T0) — 7o
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a)

FI1G. 5.4. a) Time evolution of a localized perturbation as described in the text. b) Ewvolution
of the initial peak for shorter times as indicated. The overall motion of the streamer is subtracted.
A part of the asymptotic circle is shown in gray.

We note that b(7) — 1 for T'(7) — 1, so that in the large time limit the logarithmic
cut reaches w = —1. As discussed in the context of Eq. (4.17), this is a generic feature
of the present problem. Our choice of parameters v = 1.1, ap = —7/12, n = 1.5,
almost produces a cusp in the initial condition: the offiv Zero of 9, f(w,0) is found
at wyg = 1.001 exp(—.2434). This zero, however, is driven away from the unit circle
and leaves the physical sheet. Another zero that entered the physical sheet somewhat
earlier, for 7 — oo reaches w = —1. Figure 5.4a shows snapshots of the time evolution
of the perturbed interface in a representation like figure 5.1. It illustrates how the
peak rapidly is smeared out and the interfafghecomes smooth. Figure 5.4b follows the
evolution of the peak for short times and shows how it is fofivected and broadened.

We should note that in the special case, where the initial peak[sflictly points
in forward direction (op = 0), convection cannot take place. The peak simply is
broadened and vanishes, whereas some new peak shows up at the back for intermediate
times.

6. Conclusions. As already summarized in the introduction, we here have shown
that a circle, moving according to the gradient of a Laplacian field and driven by an
external field that becomes constant far from the circle, is stabilized by a sufficiently
strong boundary condition of kinetic undercooling type. Our explicit rigorous time
dependent solution, valid for arbitrary smooth initial conditions and a special value of
a parameter specifying the boundary condition, shows that a convective mechanism
plays an important role in the stabilization. Perturbations of the circle are convected
to the back, where they decay in some quite nontrivial fashion. Mathematically,
convection is embodied in the automorphisms of the unit disk with fixed points +1.
These automorphisms dominate the dynamical behavior in both rigorously solvable
nontrivial cases € = 1 and € = oco. Also in the general case, where we cannot solve
the PDE resulting from linear stability analysis analytically, these automorphisms are
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intimately connected to the structure of the problem. We therefore expect convec-
tive stabilization to occur quite generally in the regularized problem. Work in this
direction is in progress.

Concerning the significance of our results in a physical context we note that the
dynamics at the backside of the propagating circles, which is mathematically quite
interesting, is of no relevance for real discharges. However, it may be relevant for
other physical phenomena like electromigration, which lead to mathematically similar
models. The dynamics of the front part of the physical streamer can be expected to
be adequately captured by our model. We therefore expect convective stabilization
to play an important role in physical discharges.

We acknowledge helpful and motivating discussions with F. Brau, A. Doelman,
J. Hulshof, H. Levine, L.P. Kadanoff, S. Tanveer and S. Thomae.

Appendix A. The limit ¢ — oo.
For € — oo, the PDE (3.7) with the form (3.11) of £, reduces to

(A1) (hC.T) 0+ 1 B T) =0, There B(CT) = Alw, 7).
Eq. (A.1) allows for a large set of solutions obeying the same initial condition

(A2 B(w,0) = Bo(w),

but imposing regularity on the unit disk U,,, we single out the simple form

(A.3) Blw, ) = Bo(C)-

Thus for € = oo, the dynamics is simply given by the automorphisms w — ((w, T).
This implies that B(w, 7) is bounded uniformly in 7 as

(A.4) ’ Blw,T) ’ < max ’ Bo(w) ’,

so that in contrast to the case € = 1, there is no intermediate growth of the pertur-
bations.
The shift of the center of mass is given by (cf. Eq. (4.10)):

(A.5) 5(0,7) = Bo(T(7) = fo(1) — 2 Gi(1) ¢ TG (7).

and except for the point w = —1, the shape again converges exponentially in time to
the circle along the universal slow manifold

4w

(AG) ﬂ(wa T) - 5(0, T) = 56(1) 1+w

e T+0(e7?),

cf. Eq. (4.15) for € = 1. Again the neighbourhood of w = 1 for time 7 = 0, more
precisely £p(1) and 5j(1), determine the long time convergence. Since by assumption
Bo(w) is[amalytical at w = 1, evidently an eigenfunction expansion in the sense of
subsection 4.5 exists.

The only major difference to the case e = 1 concerns the point w = —1. Clearly,
Cc
(A7) B(=1,7) = Bo(-1)
independently of 7, and indeed for 7 — oo the conformality of the mapping breaks
down in the neighbourhood of w = —1 since 9,,8(w, T)’w:71 diverges.
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