1,812 research outputs found

    On neutral pion electroproduction off deuterium

    Get PDF
    Threshold neutral pion electroproduction on the deuteron is studied in the framework of baryon chiral perturbation theory at next-to-leading order in the chiral expansion. To this order in small momenta, the amplitude is finite and a sum of two- and three-body interactions with no undetermined parameters. We calculate the S-wave multipoles for threshold production and the deuteron S-wave cross section as a function of the photon virtuality. We also discuss the sensitivity to the elementary neutron amplitudes.Comment: 6 pp, revtex, 3 figs, corrected version, to appear in Phys. Rev.

    Enhanced chiral logarithms in partially quenched QCD

    Get PDF
    I discuss the properties of pions in ``partially quenched'' theories, i.e. those in which the valence and sea quark masses, mVm_V and mSm_S, are different. I point out that for lattice fermions which retain some chiral symmetry on the lattice, e.g. staggered fermions, the leading order prediction of the chiral expansion is that the mass of the pion depends only on mVm_V, and is independent of mSm_S. This surprising result is shown to receive corrections from loop effects which are of relative size mSlnmVm_S \ln m_V, and which thus diverge when the valence quark mass vanishes. Using partially quenched chiral perturbation theory, I calculate the full one-loop correction to the mass and decay constant of pions composed of two non-degenerate quarks, and suggest various combinations for which the prediction is independent of the unknown coefficients of the analytic terms in the chiral Lagrangian. These results can also be tested with Wilson fermions if one uses a non-perturbative definition of the quark mass.Comment: 14 pages, 3 figures, uses psfig. Typos in eqs (18)-(20) corrected (alpha_4 is replaced by alpha_4/2

    QCD with domain wall quarks

    Get PDF
    We present lattice calculations in QCD using a variant of Kaplan fermions which retain the continuum SU(N)xSU(N) chiral symmetry on the lattice in the limit of an infinite extra dimension. In particular, we show that the pion mass and the four quark matrix element related to K_0-K_0-bar mixing have the expected behavior in the chiral limit, even on lattices with modest extent in the extra dimension, e.g. N_s=10.Comment: Published version. Minor differences from original. LaTeX, 12 pages including 2 PostScript figure

    Neutrino-deuteron reactions at solar neutrino energies

    Get PDF
    In interpreting the SNO experiments, very accurate estimates of the \nu d reaction cross sections are of great importance. We improve the previous estimates of our group by updating some of its inputs and by taking into account the results of a recent effective-field-theoretical calculation. The new cross sections are slightly (\sim 1%) larger than the previously reported values. We present arguments that lead to the conclusion that it is reasonable to assign 1% uncertainty to the \nu d cross sections reported here.Comment: 13 pages, 1 figur

    Chiral π\pi-exchange NN-potentials: Results for diagrams proportional to g_A^4 and g_A^6

    Full text link
    We calculate in (two-loop) chiral perturbation theory the local NN-potentials generated by the three-pion exchange diagrams proportional to g_A^4 and g_A^6. Surprisingly, we find that the total isoscalar central 3π3\pi-exchange potential vanishes identically. The individually largest 3π3\pi-exchange potentials are of isoscalar spin-spin, isovector central and isoscalar tensor type. For these potentials simple analytical expressions can be given. The strength of these dominant 3π3\pi-exchange potentials at r=1.0 fm is 4.6 MeV, 2.9 MeV and 1.4 MeV, respectively. Furthermore, we observe that the spin-spin and tensor potentials due to the diagrams proportional to g_A^6 do not exist in the infinite nucleon mass limit.Comment: 8 pages, 5 figure

    Chiral 3π\pi-exchange NN-potentials: Results for dominant next-to-leading order contributions

    Full text link
    We calculate in (two-loop) chiral perturbation theory the local NN-potentials generated by the three-pion exchange diagrams with one insertion from the second order chiral effective pion-nucleon Lagrangian proportional to the low-energy constants c1,2,3,4c_{1,2,3,4}. The resulting isoscalar central potential vanishes identically. In most cases these 3π3\pi-exchange potentials are larger than the ones generated by the diagrams involving only leading order vertices due to the large values of c3,4c_{3,4} (which mainly represent virtual Δ\Delta-excitation). A similar feature has been observed for the chiral 2π2\pi-exchange. We also give suitable (double-integral) representations for the spin-spin and tensor potentials generated by the leading-order diagrams proportional to gA6g_A^6 involving four nucleon propagators. In these cases the Cutkosky rule cannot be used to calculate the spectral-functions in the infinite nucleon mass limit since the corresponding mass-spectra start with a non-vanishing value at the 3π3\pi-threshold. Altogether, one finds that chiral 3π3\pi-exchange leads to small corrections in the region r1.4r\geq 1.4 fm where 1π1\pi- and chiral 2π2\pi-exchange alone provide a very good strong NN-force as shown in a recent analysis of the low-energy pp-scattering data-base.Comment: 11 pages, 7 figures, to be published in The Physical Review

    Chiral 2π2\pi-exchange NN-potentials: Two-loop contributions

    Get PDF
    We calculate in heavy baryon chiral perturbation theory the local NN-potentials generated by the two-pion exchange diagrams at two-loop order. We give explicit expressions for the mass-spectra (or imaginary parts) of the corresponding isoscalar and isovector central, spin-spin and tensor NN-amplitudes. We find from two-loop two-pion exchange a sizeable isoscalar central repulsion which amounts to 62.362.3 MeV at r=1.0r=1.0 fm. There is a similarly strong isovector central attraction which however originates mainly from the third order low energy constants dˉj\bar d_j entering the chiral πN\pi N-scattering amplitude. We also evaluate the one-loop 2π2\pi-exchange diagram with two second order chiral ππNN\pi \pi NN-vertices proportional to the low energy constants c1,2,3,4c_{1,2,3,4} as well as the first relativistic 1/M-correction to the 2π2\pi-exchange diagrams with one such vertex. The diagrammatic results presented here are relevant components of the chiral NN-potential at next-to-next-to-next-to-leading order.Comment: 6 pages, 2 figure

    Family of Hermitian Low-Momentum Nucleon Interactions with Phase Shift Equivalence

    Full text link
    Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum NN interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions for Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Lambda. Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the LS and several Hermitian low-momentum interactions are compared.Comment: 10 pages, 7 figure
    corecore