33 research outputs found

    Functional Defect in Neutrophil Cytosols from Two Patients with Autosomal Recessive Cytochrome-positive Chronic Granulomatous Disease

    Get PDF
    Abstract The kinetics of activation of the respiratory burst oxidase in the cell-free oxidase-activating system have been explained by a three-stage mechanism in which the membrane-associated oxidase components M: (a) take up a cytosolic factor S to form a complex M S that is (b) 48-kD proteins that are missing in certain forms of CGD, and that other forms of type II CGD besides the one described in this report remain to be discovered

    Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e53889, doi:10.1371/journal.pone.0053889.Thecosome pteropods (Mollusca, Gastropoda) are an ecologically important, diverse, and ubiquitous group of holoplanktonic animals that are the focus of intense research interest due to their external aragonite shell and vulnerability to ocean acidification. Characterizing the response of these animals to low pH and other environmental stressors has been hampered by continued uncertainty in their taxonomic identification. An example of this confusion in species assignment is found in the genus Diacavolinia. All members of this genus were originally indentified as a single species, Cavolinia longirostris, but over the past fifty years the taxonomy has been revisited multiple times; currently the genus comprises 22 different species. This study examines five species of Diacavolinia, including four sampled in the Northeast Atlantic (78 individuals) and one from the Eastern tropical North Pacific (15 individuals). Diacavolina were identified to species based on morphological characteristics according to the current taxonomy, photographed, and then used to determine the sequence of the “DNA barcoding” region of the cytochrome c oxidase subunit I (COI). Specimens from the Atlantic, despite distinct differences in shell morphology, showed polyphyly and a genetic divergence of <3% (K2P distance) whereas the Pacific and Atlantic samples were more distant (~19%). Comparisons of Diacavolinia spp. with other Cavolinia spp. reveal larger distances (~24%). These results indicate that specimens from the Atlantic comprise a single monophyletic species and suggest possible species-level divergence between Atlantic and Pacific populations. The findings support the maintenance of Diacavolinia as a separate genus, yet emphasize the inadequacy of our current taxonomic understanding of pteropods. They highlight the need for accurate species identifications to support estimates of biodiversity, range extent and natural exposure of these planktonic calcifiers to environmental variability; furthermore, the apparent variation of the pteropods shell may have implications for our understanding of the species’ sensitivity to ocean acidification.This material is based upon work supported by the National Science Foundation under Grant Number OCE-0928801. AEM was funded through the WHOI Postdoctoral Scholarship. Support to LBB was provided by the College of Liberal Arts & Sciences, University of Connecticut; and by the Census of Marine Life/Alfred P. Sloan Foundation

    Biological Defense Mechanisms. THE PRODUCTION BY LEUKOCYTES OF SUPEROXIDE, A POTENTIAL BACTERICIDAL AGENT

    No full text
    As a highly reactive substance produced in biological systems by the one-electron reduction of oxygen, superoxide (O(2)(-)) seemed a likely candidate as a bactericidal agent in leukocytes. The reduction of cytochrome c, a process in which O(2)(-) may serve as an electron donor, was found to occur when the cytochrome was incubated with leukocytes. O(2)(-) was identified as the agent responsible for the leukocyte-mediated reduction of cytochrome c by the demonstration that the reaction was abolished by superoxide dismutase, an enzyme that destroys O(2)(-), but not by boiled dismutase, albumin, or catalase. Leukocyte O(2)(-) production doubled in the presence of latex particles. The average rate of formation of O(2)(-) in the presence of these particles was 1.03 nmol/10(7) cells per 15 min. This rate, however, is only a lower limit of the true rate of O(2)(-) production, since any O(2)(-) which reacted with constituents other than cytochrome c would have gone undetected. Thus. O(2)(-) is made by leukocytes under circumstances which suggest that it may be involved in bacterial killing

    JFC1 is transcriptionally activated by nuclear factor-kappaB and up-regulated by tumour necrosis factor alpha in prostate carcinoma cells.

    No full text
    The human promoter region of JFC1, a phosphatidylinositol 3,4,5-trisphosphate binding ATPase, was isolated by amplification of a 549 bp region upstream of the jfc1 gene by the use of a double-PCR system. By primer extension analysis we mapped the transcription initiation site at nucleotide -321 relative to the translation start site. Putative regulatory elements were identified in the jfc1 TATA-less promoter, including three consensus sites for nuclear factor-kappaB (NF-kappaB). We analysed the three putative NF-kappaB binding sites by gel retardation and supershift assays. Each of the putative NF-kappaB sites interacted specifically with recombinant NF-kappaB p50, and the complexes co-migrated with those formed by the NF-kappaB consensus sequence and p50. An antibody to p50 generated a supershifted complex for these NF-kappaB sites. These sites formed specific complexes with nuclear proteins from tumour necrosis factor alpha (TNFalpha)-treated WEHI 231 cells, which were supershifted with antibodies against p50 and p65. The jfc1 promoter was transcriptionally active in various cell lines, as determined by luciferase reporter assays following transfection with a jfc1 promoter luciferase vector. Co-transfection with NF-kappaB expression vectors or stimulation with TNFalpha resulted in significant transactivation of the jfc1 promoter construct, although transactivation of a mutated jfc1 promoter was negligible. The expression of a dominant negative IkappaB (inhibitor kappaB) decreased basal jfc1 promoter activity. The cell lines PC-3, LNCaP and DU-145, but not Epstein-Barr virus-transformed lymphocytes, showed a dramatic increase in the expression of JFC1 after treatment with TNFalpha, suggesting that transcriptional activation of JFC1 by the TNFalpha/NF-kappaB pathway is significant in prostate carcinoma cell lines

    NADPH Dehydrogenase Activity of p67 PHOX

    No full text
    corecore