6 research outputs found

    Urban Lead: Modeling Its Distribution and Effects on Children

    Get PDF
    We model the transportation of lead from the atmosphere and from the surface of the soil simultaneously at the macroscale and mesoscale to study its health effects on children in Jersey City, NJ. We conceptualize Jersey City as an open system where lead is continuously emitted from a local smelting plant and a local power plant, deposited onto the surface soil of playgrounds, and ingested by children. The model is constructed using the diffusion-advection partial differential equation in three spatial dimensions and one temporal dimension with an initial condition and boundary conditions. The model is solved using the Crank-Nicolson numerical method at the macroscale to determine the deposition of lead from the smelting plant and the local power plant and at the mesoscale to refine the amount of lead deposition for the areas considered. We then determine the health consequences for the average child using the bioaccessibility of lead from soil to children, the bioavailability of ingested lead to the circulatory system, and the biological half-life of lead isotopes in the blood. The health effects on children from lead are directly proportional to the blood lead concentration

    Modelling the Effects of Radioactive Effluent on Thunnus orientalis and Oncorhynchus gorbuscha

    No full text
    The contamination of the Pacific Ocean by the radioactive pollutants released from the Fukushima Daiichi Nuclear Power Plant has raised legitimate concerns over the viability of marine wildlife. We develop a modified Crank-Nicholson method to approximate a solution to the diffusion-advection-decay equation in time and three spatial dimensions to explore the extent of the effects of the radioactive effluent on two marine species: the Pacific Bluefin Tuna (Thunnus orientalis) and the Pacific Pink Salmon (Oncorhynchus gorbuscha)

    Model Uncertainty in Cloud-Circulation Coupling, and Cloud-Radiative Response to Increasing CO2, Linked to Biases in Climatological Circulation

    No full text
    Recent analyses of global climate models suggest that uncertainty in the coupling between mid-latitude clouds and the atmospheric circulation contributes to uncertainty in climate sensitivity. However, the reasons behind model differences in the cloud-circulation coupling have remained unclear. Here, we use a global climate model in idealized aquaplanet setup to show that the Southern Hemisphere climatological circulation, which in many models is biased equatorward, contributes to the model differences in the cloud-circulation coupling. For the same poleward shift of the Hadley circulation (HC) edge, models with narrower climatological HCs exhibit stronger mid-latitude cloud-induced shortwave warming than models with wider climatological HCs. This cloud-induced radiative warming results predominantly from a subsidence warming that decreases cloud fraction and is stronger for narrower HCs because of a larger meridional gradient in the vertical velocity. A comparison of our aquaplanet results with comprehensive climate models suggests that about half of the model uncertainty in the mid-latitude cloud-circulation coupling stems from this impact of the circulation on the large-scale temperature structure of the atmosphere, and thus could be removed by improving the climatological circulation in models. This illustrates how understanding of large-scale dynamics can help reduce uncertainty in clouds and their response to climate change

    Midlatitude Cloud Shifts, Their Primary Link to the Hadley Cell, and Their Diverse Radiative Effects

    No full text
    We investigate the interannual relationship among clouds, their radiative effects, and two key indices of the atmospheric circulation: the latitudinal positions of the Hadley cell edge and the midlatitude jet. From reanalysis data and satellite observations, we find a clear and consistent relationship between the width of the Hadley cell and the high cloud field, statistically significant in nearly all regions and seasons. In contrast, shifts of the midlatitude jet correlate significantly with high cloud shifts only in the North Atlantic region during the winter season. While in that region and season poleward high cloud shifts are associated with shortwave radiative warming, over the Southern Oceans during all seasons they are associated with shortwave radiative cooling. Finally, a trend analysis reveals that poleward high cloud shifts observed over the 1983-2009 period are more likely related to Hadley cell expansion, rather than poleward shifts of the midlatitude jets
    corecore