55 research outputs found

    The use and characterization of composite alumina-titania-zirconia-silica-ceramic membranes for gas separation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Materials Science and Engineering, Izmir, 2002Includes bibliographical references (leaves: 120-124)Text in English; Abstract: Turkish and Englishx, 124 leavesThe preparation, characterization and pure gas permeation of sol-gel derived alumina and silica membranes were investigated in this work. The effects of various parameters on sol particle size and unsupported membranes pore structure were investigated by laser light scattering particle size and N2 adsorption-desorption analysis .-alumina membranes were prepared on ZrO2 supports by successive dipping into boehmite sols. Almost proportional decreases in sol particle size and membrane pore diameter were determined with increasing acid content during the boehmite sol preparation. Increasing the H+/Al3+ mole ratio from 0.1 to 0.25 caused the hydrodynamic particle size and BJH pore size to decrease from 65 to 30 nm and 3.6 to 2.9 nm, respectively. The pore size increased from 2.8 nm to 3 nm upon increasing the calcination temperature from 500 to 600oC. Unsupported membranes were heat treated in the 200 to 1200 oC range for the characterization of the phase structure. Boehmite was the dominant phase below 500 oC, gamma being the dominant phase up to 900 oC and pure .-Al2O3 phase was obtained upon heat treatment at 1200oC. Pinhole and crack free alumina membranes about 3 .m (double layer) in thickness were observed from SEM pictures with insignificant infiltration. The CO2 permeability through the double layer .-Al2O3 membrane calcined at 600 oC was about 2.25*10-7 mol/m2.s.Pa, and had a slight pressure dependence which may indicate Knudsen Diffusion and Laminar Flow as the effective transport mechanisms. Upon the calcination of a similar double layer alumina membrane at 500oC, the CO2 permeability decreased to 1.51*10-8 mol/m2.s.Pa and was independent of pressure. Silica membranes were prepared by a sol-gel technique. These sols were prepared by acid catalysed hydrolysis and condensation of tetraethylorthosilicate in the presence of a solvent. The effects of processing parameters like the acid type and amount utilized during sol preparation, sol aging, heat treatment conditions, dipping time on the membrane pore structure and the permeation of pure gases were investigated. The supported membranes were heat treated in the 50-400 oC range. The N2 and CO2 permeabilities of silica membranes varied in the 2.2 * 10-10 . 2.7 * 10-8 mol / m2.s.Pa and 1.2*10-9 . 6.95*10-8 mol / m2.s.Pa range for single layer membranes dipped for 10 seconds into the sol. The sols became viscous and gelled in 16 hours at 50 oC. The O2 permeability increased with aging time. The optimum dipping time during processing was determined to be 10 seconds. The permeabilities of these membranes increased significantly with the sol acid content. The thickness of the silica membranes were determined to be about 2.m and significant infiltration into the support was observed from the SEM pictures

    Gas permeation through sol-gel derived alumina and silica based membranes

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Chemical Engineering, Izmir, 2009Includes bibliographical references (leaves: 201-214)Text in English; Abstract: Turkish and Englishxix, 214 leavesThe scope of this thesis is to design defect-free microporous and mesoporous ceramic membranes having micro-engineered pore network that would contribute to the enhancement of pore control abilities as well as the thermal stability.In this study, mono-dispersed silica sols having well-defined silica spheres ranging in size from 5 to 700 nm were prepared through sol-gel methods and thin membrane layers were consolidated on either y-alumina support or unsupported form.The packing of 5 nm silica spheres resulted in micropores of 0.87 nm in 400 oC treatedmembranes with the porosity of 0.32 which are in well aggrement with the porosity level of random loose packing. Silica spheres with varying concentration and size were incorporated into polymeric network to complement the percolative structure of sphere packing with interpenetrated polymeric silica network in order to design well-defined thermally stable transport pathway. Low shrinkage value was obtained for sphere incorporated system providing the high thermal stability by affecting the thermally induced microcrack formation as well as the structural relaxation during consolidation.The resulting hybrid structure enabled the detailed transport properties that support to be able to control the pore structure but N2/CO2 separation properties are needed to be improved.Stable polymeric alumina sols having particle sizes smaller than 2 nm could be obtained when the hydrolysis conditions were accurately controlled. The mixture of prepared polymeric silica and alumina sols in mullite compositions (3:2) provided to the crystallization of mullite with homogeneously mixed stable oxide network upon heat treatment at 775 oC

    Effects of processing on the properties and permeability of pure gases through sol-gel silica membranes

    Get PDF
    N2, O2 and CO2 pure gas permeation through sol-gel derived silica membranes were determined and the effects of processing parameters on the microstructure of the membrane was investigated. Silica sols were prepared in an alcoholic solution by hydrolysis and condensation of TEOS as a function of acid content. The thickness of the silica membranes was determined to be about 2μm and significant infiltration into the support was observed from the SEM pictures. The supported membranes were heat treated in the 50-400°C. The N2 permeabilities of silica membranes varied in the 2.2*10-10-2.7*10-8 mol/m2.s.Pa range for single layer membranes dipped for 10s. in the sol. The CO2 permeability of these membranes varied in the 1.2*10-9-6.95 *10-8 mol/m2.s.Pa range. The sols became viscous and gelled at 50°C in 16 hours. The O2 permeability increased with aging time. The optimum dipping time during processing was determined to be 10 seconds. The increase in the acid content of the sols were observed to increase permeabilities of the membranes significantly

    Influence of the initial chemical conditions on the rational design of silica particles

    Get PDF
    The influence of the water content in the initial composition on the size of silica particles produced using the Stöber process is well known. We have shown that there are three morphological regimes defined by compositional boundaries. At low water levels (below stoichiometric ratio of water:tetraethoxysilane), very high surface area and aggregated structures are formed; at high water content (>40 wt%) similar structures are also seen. Between these two boundary conditions, discrete particles are formed whose size are dictated by the water content. Within the compositional regime that enables the classical Stöber silica, the structural evolution shows a more rapid attainment of final particle size than the rate of formation of silica supporting the monomer addition hypothesis. The clearer understanding of the role of the initial composition on the output of this synthesis method will be of considerable use for the establishment of reliable reproducible silica production for future industrial adoption

    Gas permeation through sol-gel derived alumina and silica based membranes

    No full text
    Thesis (Doctoral)--Izmir Institute of Technology, Chemical Engineering, Izmir, 2009Includes bibliographical references (leaves: 201-214)Text in English; Abstract: Turkish and Englishxix, 214 leavesThe scope of this thesis is to design defect-free microporous and mesoporous ceramic membranes having micro-engineered pore network that would contribute to the enhancement of pore control abilities as well as the thermal stability.In this study, mono-dispersed silica sols having well-defined silica spheres ranging in size from 5 to 700 nm were prepared through sol-gel methods and thin membrane layers were consolidated on either y-alumina support or unsupported form.The packing of 5 nm silica spheres resulted in micropores of 0.87 nm in 400 oC treatedmembranes with the porosity of 0.32 which are in well aggrement with the porosity level of random loose packing. Silica spheres with varying concentration and size were incorporated into polymeric network to complement the percolative structure of sphere packing with interpenetrated polymeric silica network in order to design well-defined thermally stable transport pathway. Low shrinkage value was obtained for sphere incorporated system providing the high thermal stability by affecting the thermally induced microcrack formation as well as the structural relaxation during consolidation.The resulting hybrid structure enabled the detailed transport properties that support to be able to control the pore structure but N2/CO2 separation properties are needed to be improved.Stable polymeric alumina sols having particle sizes smaller than 2 nm could be obtained when the hydrolysis conditions were accurately controlled. The mixture of prepared polymeric silica and alumina sols in mullite compositions (3:2) provided to the crystallization of mullite with homogeneously mixed stable oxide network upon heat treatment at 775 oC

    The use and characterization of composite alumina-titania-zirconia-silica-ceramic membranes for gas separation

    No full text
    Thesis (Master)--Izmir Institute of Technology, Materials Science and Engineering, Izmir, 2002Includes bibliographical references (leaves: 120-124)Text in English; Abstract: Turkish and Englishx, 124 leavesThe preparation, characterization and pure gas permeation of sol-gel derived alumina and silica membranes were investigated in this work. The effects of various parameters on sol particle size and unsupported membranes pore structure were investigated by laser light scattering particle size and N2 adsorption-desorption analysis .-alumina membranes were prepared on ZrO2 supports by successive dipping into boehmite sols. Almost proportional decreases in sol particle size and membrane pore diameter were determined with increasing acid content during the boehmite sol preparation. Increasing the H+/Al3+ mole ratio from 0.1 to 0.25 caused the hydrodynamic particle size and BJH pore size to decrease from 65 to 30 nm and 3.6 to 2.9 nm, respectively. The pore size increased from 2.8 nm to 3 nm upon increasing the calcination temperature from 500 to 600oC. Unsupported membranes were heat treated in the 200 to 1200 oC range for the characterization of the phase structure. Boehmite was the dominant phase below 500 oC, gamma being the dominant phase up to 900 oC and pure .-Al2O3 phase was obtained upon heat treatment at 1200oC. Pinhole and crack free alumina membranes about 3 .m (double layer) in thickness were observed from SEM pictures with insignificant infiltration. The CO2 permeability through the double layer .-Al2O3 membrane calcined at 600 oC was about 2.25*10-7 mol/m2.s.Pa, and had a slight pressure dependence which may indicate Knudsen Diffusion and Laminar Flow as the effective transport mechanisms. Upon the calcination of a similar double layer alumina membrane at 500oC, the CO2 permeability decreased to 1.51*10-8 mol/m2.s.Pa and was independent of pressure. Silica membranes were prepared by a sol-gel technique. These sols were prepared by acid catalysed hydrolysis and condensation of tetraethylorthosilicate in the presence of a solvent. The effects of processing parameters like the acid type and amount utilized during sol preparation, sol aging, heat treatment conditions, dipping time on the membrane pore structure and the permeation of pure gases were investigated. The supported membranes were heat treated in the 50-400 oC range. The N2 and CO2 permeabilities of silica membranes varied in the 2.2 * 10-10 . 2.7 * 10-8 mol / m2.s.Pa and 1.2*10-9 . 6.95*10-8 mol / m2.s.Pa range for single layer membranes dipped for 10 seconds into the sol. The sols became viscous and gelled in 16 hours at 50 oC. The O2 permeability increased with aging time. The optimum dipping time during processing was determined to be 10 seconds. The permeabilities of these membranes increased significantly with the sol acid content. The thickness of the silica membranes were determined to be about 2.m and significant infiltration into the support was observed from the SEM pictures

    Bakır ftalosiyanin çöktürülmüş mika titan pigment sentezi ve özelliklerinin belirlenmesi.

    No full text
    In the present work, anatase and rutile titanium dioxide (TiO2) coated lustrous mica pigments were prepared by heterogeneous nucleation method. Anatase-rutile phase transformation of the TiO2 on mica substrate was achieved by coating very thin layers of tin (IV) oxide on mica surfaces prior to TiO2 deposition. Muscovite mica, which was used in the experiments was sieved, pre-treated with sodium bicarbonate and decantated before coating process. The surface morphology of mica titania pigments and anatase-rutile phase transformation were investigated by SEM and XRD analyse, respectively. Also, microwave-assisted synthesis of copper phthalocyanine and tetracarboxamide copper phthalocyanine pigments were carried out with phthalic anhydride and trimellitic anhydride precursors, respectively. Molecular structures of these pigments were confirmed by FT-IR and UV-visible spectroscopy analyse. Furthermore, combination pigments were obtained by the process of deposition of copper phthalocyanine pigments on mica-titania pigment substrate in dimethyl formamide solvent. FT-IR analysis and XRD analyse were performed to observe the transformations in the crystal forms of copper phthalocyanines on the substrate. The surface morphologies of copper phthalocyanines on the mica titania pigments were investigated by SEM analysis. Varying amounts of copper phthalocyanines were deposited on the mica surfaces, and nitrogen elemental analysis was performed to determine the amount of copper phthalocyanines. The resulting pigments were incorporated into alkyd based resin to prepare paint samples. L*a*b* values, gloss property, and hardness of the paint samples were determined by color measuring device, gloss meter and hardness measuring device, respectively. The resulting combination pigments obtained in this study showed improved luster, hue, and color intensity. Furthermore, in literature it was reported that these pigments have very high bleed resistance. This can be attributed to large macromolecular structure of copper phthalocyanine on the surface of mica titania pigment that prevents bleeding of the pigment from the paint. Moreover, the paint samples obtained from combination pigments showed higher hardness with respect to the paint sample of the mica titania pigment.M.S. - Master of Scienc

    Preparation and characterization of diphasic sol-gel derived unsupported mullite membranes

    Get PDF
    Diphasic gels prepared by mixing freshly prepared polymeric silica and polymeric boehmite sols through a modified Al-alkoxide route in mullite compositions led to the crystallization of mullite upon heat treatment at 775°C. Mullite formation was observed at a 100°C higher temperature when diphasic gels were formed by mixing aged polymeric sols containing about 2 nm in diameter boehmite species. These relatively low mullite formation temperatures were attributed to the nanoscale sizes of the polymeric species of the two amorphous phases present in the diphasic gels

    Sol-gel derived mesoporous and microporous alumina membranes

    Get PDF
    Stable polymeric and colloidal boehmite sols were prepared by sol-gel process through controlled hydrolysis/condensation reactions. The particle sizes of the colloidal sols were in the 12-25 nm range depending on the process parameters and about 2 nm for polymeric sols. The presence of a significant increase in the microporosity content of the heat treated polymeric membranes relative to the mesoporous colloidal membranes might make the design of thermally stable microporous alumina membranes with controlled pore structures possible. The phase structure evolution in the 600-800 °C range had shown that the crystallization of the gamma alumina in the amorphous matrix starts at about 800 °C. This indicated that the pore structure stability may be enhanced through processing up to this relatively high temperature in polymeric alumina derived unsupported membranes. The permeance values of the two and three layered colloidal alumina membranes were observed to be independent of pressure which implies that the dominant gas transport mechanism is Knudsen diffusion in these structures. This was also supported by the 2.8 nm BJH pore sizes of the colloidal membranes. The Knudsen diffusion equation derived permeances of the polymeric alumina membranes with thicknesses of about 300 nm were determined to be very close to the experimentally determined permeance values. © 2010 Springer Science+Business Media, LLC

    Preparation of particulate/polymeric sol-gel derived microporous silica membranes and determination of their gas permeation properties

    No full text
    Monodisperse silica sols with well-defined spherical particles ranging in size from 5 to 310 nm were prepared through Stober process. Both particulate and polymeric sol-gel routes were employed for the preparation of stable silica sols. The use of polymeric species in combination with particulate silica spheres may allow the design of predefined membrane pore structures with high thermal stability by cubic/random/close packing of monodisperse spherical particles incorporated into the polymeric network. The size and volume content of spheres were varied in order to modify the consolidation behaviour of 2-structural silica membranes which would enhance the thermal stability. The low shrinkage level for sphere loaded 2-structural systems compared to the pure polymeric counterparts might be explained by the decrease in the structural free energy of the polymeric/particulate 2-structural system. The thermal stability of the microporous membranes may thus be improved by incorporating particulates into the polymeric network through the formation of a lower extent of thermally induced microcrack formation. The N2 permeation through 90 nm silica sphere added silica membranes remained constant when they were heat treated in the 250-400 °C range indicating the stability of the pore network. © 2009 Elsevier B.V. All rights reserved
    corecore