13,380 research outputs found

    Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits

    Full text link
    Creation of entanglement is considered theoretically and numerically in an ensemble of spin chains with dipole-dipole interaction between the spins. The unwanted effect of the long-range dipole interaction is compensated by the optimal choice of the parameters of radio-frequency pulses implementing the protocol. The errors caused by (i) the influence of the environment,(ii) non-selective excitations, (iii) influence of different spin chains on each other, (iv) displacements of qubits from their perfect locations, and (v) fluctuations of the external magnetic field are estimated analytically and calculated numerically. For the perfectly entangled state the z component, M, of the magnetization of the whole system is equal to zero. The errors lead to a finite value of M. If the number of qubits in the system is large, M can be detected experimentally. Using the fact that M depends differently on the parameters of the system for each kind of error, varying these parameters would allow one to experimentally determine the most significant source of errors and to optimize correspondingly the quantum computer design in order to decrease the errors and M. Using our approach one can benchmark the quantum computer, decrease the errors, and prepare the quantum computer for implementation of more complex quantum algorithms.Comment: 31 page

    On the Creation of the Universe out of Nothing

    Full text link
    We explain how the Universe was created with no expenditure of energy or initial mass.Comment: To be presented at IWARA 2009 (4th International Workshop on Astronomy and Relativistic Astrophysics), to be held in Brazil, October 200

    On the role of coupling in mode selective excitation using ultrafast pulse shaping in stimulated Raman spectroscopy

    Full text link
    The coherence of two, coupled two-level systems, representing vibrational modes in a semiclassical model, is calculated in weak and strong fields for various coupling schemes and for different relative phases between initial state amplitudes. A relative phase equal to π\pi projects the system into a dark state. The selective excitation of one of the two, two-level systems is studied as a function of coupling strength and initial phases.Comment: 7 pages, 4 figure

    The Super-Strong Coupling Regime of Cavity Quantum Electrodynamics

    Get PDF
    We describe a qualitatively new regime of cavity quantum electrodynamics, the super strong coupling regime. This regime is characterized by atom-field coupling strengths of the order of the free spectral range of the cavity, resulting in a significant change in the spatial mode functions of the light field. It can be reached in practice for cold atoms trapped in an optical dipole potential inside the resonator. We present a nonperturbative scheme that allows us to calculate the frequencies and linewidths of the modified field modes, thereby providing a good starting point for a quantization of the theory.Comment: Figures rearranged and introduction rewritte

    Atom interferometry in the presence of an external test mass

    Full text link
    The influence of an external test mass on the phase of the signal of an atom interferometer is studied theoretically. Using traditional techniques in atom optics based on the density matrix equations in the Wigner representation, we are able to extract the various contributions to the phase of the signal associated with the classical motion of the atoms, the quantum correction to this motion resulting from atomic recoil that is produced when the atoms interact with Raman field pulses, and quantum corrections to the atomic motion that occur in the time between the Raman field pulses. By increasing the effective wave vector associated with the Raman field pulses using modified field parameters, we can increase the sensitivity of the signal to the point where the quantum corrections can be measured. The expressions that are derived can be evaluated numerically to isolate the contribution to the signal from an external test mass. The regions of validity of the exact and approximate expressions are determined.Comment: 23 pages, 3 figures, 2 table

    Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    Full text link
    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described. This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.Comment: 13 pages, 8 figure

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Relaxation and Zeno effect in qubit measurements

    Full text link
    We consider a qubit interacting with its environment and continuously monitored by a detector represented by a point contact. Bloch-type equations describing the entire system of the qubit, the environment and the detector are derived. Using these equations we evaluate the detector current and its noise spectrum in terms of the decoherence and relaxation rates of the qubit. Simple expressions are obtained that show how these quantities can be accurately measured. We demonstrate that due to interaction with the environment, the measurement can never localize a qubit even for infinite decoherence rate.Comment: some clarifications added, to appear in Phys. Rev. Let

    The M five brane on a torus

    Get PDF
    The D-3 brane is examined from the point of view of the wrapped M-theory five brane on a torus. In particular, the S-dual versions of the 3-brane are identified as coming from different gauge choices of the auxiliary field that is introduced in the PST description of the five brane world volume theory.Comment: 7 pages. To appear in proceedings of "Quantum aspects of gauge theories, supergravity and unification", Corfu, September 1998, typos correcte
    • …
    corecore