14,147 research outputs found

    Aspects of holography and rotating AdS black holes

    Get PDF
    A comparison is made between the thermodynamics of weakly and strongly coupled Yang-Mills with fixed angular momentum. The free energy of the strongly coupled Yang-Mills is calculated by using a dual supergravity description corresponding to a rotating black hole in an Anti de Sitter (AdS) background. All thermodynamic quantities are shown have the same ratio of 3/4 (independent of angular momentum) between strong and weak coupling.Comment: 6 pages latex, Talk given at the TMR conference ``Quantum aspects of gauge theories, supersymmetry and unification", Paris Sept. 199

    Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits

    Full text link
    Creation of entanglement is considered theoretically and numerically in an ensemble of spin chains with dipole-dipole interaction between the spins. The unwanted effect of the long-range dipole interaction is compensated by the optimal choice of the parameters of radio-frequency pulses implementing the protocol. The errors caused by (i) the influence of the environment,(ii) non-selective excitations, (iii) influence of different spin chains on each other, (iv) displacements of qubits from their perfect locations, and (v) fluctuations of the external magnetic field are estimated analytically and calculated numerically. For the perfectly entangled state the z component, M, of the magnetization of the whole system is equal to zero. The errors lead to a finite value of M. If the number of qubits in the system is large, M can be detected experimentally. Using the fact that M depends differently on the parameters of the system for each kind of error, varying these parameters would allow one to experimentally determine the most significant source of errors and to optimize correspondingly the quantum computer design in order to decrease the errors and M. Using our approach one can benchmark the quantum computer, decrease the errors, and prepare the quantum computer for implementation of more complex quantum algorithms.Comment: 31 page

    Relaxation and Zeno effect in qubit measurements

    Full text link
    We consider a qubit interacting with its environment and continuously monitored by a detector represented by a point contact. Bloch-type equations describing the entire system of the qubit, the environment and the detector are derived. Using these equations we evaluate the detector current and its noise spectrum in terms of the decoherence and relaxation rates of the qubit. Simple expressions are obtained that show how these quantities can be accurately measured. We demonstrate that due to interaction with the environment, the measurement can never localize a qubit even for infinite decoherence rate.Comment: some clarifications added, to appear in Phys. Rev. Let

    Solid-State Nuclear Spin Quantum Computer Based on Magnetic Resonance Force Microscopy

    Get PDF
    We propose a nuclear spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two- qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1K.Comment: 16 pages, 5 figure

    The Super-Strong Coupling Regime of Cavity Quantum Electrodynamics

    Get PDF
    We describe a qualitatively new regime of cavity quantum electrodynamics, the super strong coupling regime. This regime is characterized by atom-field coupling strengths of the order of the free spectral range of the cavity, resulting in a significant change in the spatial mode functions of the light field. It can be reached in practice for cold atoms trapped in an optical dipole potential inside the resonator. We present a nonperturbative scheme that allows us to calculate the frequencies and linewidths of the modified field modes, thereby providing a good starting point for a quantization of the theory.Comment: Figures rearranged and introduction rewritte

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Quantum Measurement of a Single Spin using Magnetic Resonance Force Microscopy

    Get PDF
    Single-spin detection is one of the important challenges facing the development of several new technologies, e.g. single-spin transistors and solid-state quantum computation. Magnetic resonance force microscopy with a cyclic adiabatic inversion, which utilizes a cantilever oscillations driven by a single spin, is a promising technique to solve this problem. We have studied the quantum dynamics of a single spin interacting with a quasiclassical cantilever. It was found that in a similar fashion to the Stern-Gerlach interferometer the quantum dynamics generates a quantum superposition of two quasiclassical trajectories of the cantilever which are related to the two spin projections on the direction of the effective magnetic field in the rotating reference frame. Our results show that quantum jumps will not prevent a single-spin measurement if the coupling between the cantilever vibrations and the spin is small in comparison with the amplitude of the radio-frequency external field.Comment: 16 pages RevTeX including 4 figure
    • …
    corecore