18,641 research outputs found

    Aspects of holography and rotating AdS black holes

    Get PDF
    A comparison is made between the thermodynamics of weakly and strongly coupled Yang-Mills with fixed angular momentum. The free energy of the strongly coupled Yang-Mills is calculated by using a dual supergravity description corresponding to a rotating black hole in an Anti de Sitter (AdS) background. All thermodynamic quantities are shown have the same ratio of 3/4 (independent of angular momentum) between strong and weak coupling.Comment: 6 pages latex, Talk given at the TMR conference ``Quantum aspects of gauge theories, supersymmetry and unification", Paris Sept. 199

    Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits

    Full text link
    Creation of entanglement is considered theoretically and numerically in an ensemble of spin chains with dipole-dipole interaction between the spins. The unwanted effect of the long-range dipole interaction is compensated by the optimal choice of the parameters of radio-frequency pulses implementing the protocol. The errors caused by (i) the influence of the environment,(ii) non-selective excitations, (iii) influence of different spin chains on each other, (iv) displacements of qubits from their perfect locations, and (v) fluctuations of the external magnetic field are estimated analytically and calculated numerically. For the perfectly entangled state the z component, M, of the magnetization of the whole system is equal to zero. The errors lead to a finite value of M. If the number of qubits in the system is large, M can be detected experimentally. Using the fact that M depends differently on the parameters of the system for each kind of error, varying these parameters would allow one to experimentally determine the most significant source of errors and to optimize correspondingly the quantum computer design in order to decrease the errors and M. Using our approach one can benchmark the quantum computer, decrease the errors, and prepare the quantum computer for implementation of more complex quantum algorithms.Comment: 31 page

    Influence of qubit displacements on quantum logic operations in a silicon-based quantum computer with constant interaction

    Full text link
    The errors caused by qubit displacements from their prescribed locations in an ensemble of spin chains are estimated analytically and calculated numerically for a quantum computer based on phosphorus donors in silicon. We show that it is possible to polarize (initialize) the nuclear spins even with displaced qubits by using Controlled NOT gates between the electron and nuclear spins of the same phosphorus atom. However, a Controlled NOT gate between the displaced electron spins is implemented with large error because of the exponential dependence of exchange interaction constant on the distance between the qubits. If quantum computation is implemented on an ensemble of many spin chains, the errors can be small if the number of chains with displaced qubits is small

    Solid-State Nuclear Spin Quantum Computer Based on Magnetic Resonance Force Microscopy

    Get PDF
    We propose a nuclear spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two- qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1K.Comment: 16 pages, 5 figure

    General-Purpose Parallel Simulator for Quantum Computing

    Full text link
    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, the simulation methods using parallel processing are required. We have developed a general-purpose simulator for quantum computing on the parallel computer (Sun, Enterprise4500). It can deal with up-to 30 qubits. We have performed Shor's factorization and Grover's database search by using the simulator, and we analyzed robustness of the corresponding quantum circuits in the presence of decoherence and operational errors. The corresponding results, statistics and analyses are presented.Comment: 15 pages, 15 figure

    Non-Resonant Effects in Implementation of Quantum Shor Algorithm

    Get PDF
    We simulate Shor's algorithm on an Ising spin quantum computer. The influence of non-resonant effects is analyzed in detail. It is shown that our ``2Ď€k2\pi k''-method successfully suppresses non-resonant effects even for relatively large values of the Rabi frequency.Comment: 11 pages, 13 figure
    • …
    corecore