49 research outputs found

    A Polariton Graph Simulator

    Get PDF
    We discuss polariton graphs as a new platform for simulating the classical XY and Kuramoto models. Polariton condensates can be imprinted into any two-dimensional graph by spatial modulation of the pumping laser. Polariton simulators have the potential to reach the global minimum of the XY Hamiltonian in a bottom-up approach by gradually increasing excitation density to threshold or to study large scale synchronization phenomena and dynamical phase transitions when operating above the threshold. We consider the modelling of polariton graphs using the complex Ginzburg–Landau model and derive analytical solutions for a single condensate, the XY model, two-mode model and the Kuramoto model establishing the relationships between them.This work was carried out in the framework of the joint Russian–Greek project supported by Ministry of Education and Science of The Russian Federation (project RFMEFI61617X0085). The authors acknowledge the support of the Skoltech NGP Program (Skoltech–MIT joint project), and the UK's Engineering and Physical Sciences Research Council (grant EP/M025330/1 on Hybrid Polaritonics)

    Inelastic scattering of xenon atoms by quantized vortices in superfluids

    Get PDF
    We study inelastic interactions of particles with quantized vortices in superfluids by using a semiclassical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon-doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.The financial support from the Skoltech-MIT Next Generation Program is gratefully acknowledged

    Exotic states of matter with polariton chains

    Get PDF
    We consider linear periodic chains of exciton-polariton condensates formed by pumping polaritons nonresonantly into a linear network. To the leading order such a sequence of condensates establishes relative phases as to minimize a classical one-dimensional XY Hamiltonian with nearest and next-to-nearest neighbors. We show that the low-energy states of polaritonic linear chains demonstrate various classical regimes: ferromagnetic, antiferromagnetic, and frustrated spiral phases where quantum or thermal fluctuations are expected to give rise to a spin-liquid state. At the same time nonlinear interactions at higher pumping intensities bring about phase chaos and novel exotic phases.The authors acknowledge the support of the Skoltech NGP Program (Skoltech-MIT joint project). K.P.K. acknowledges the financial support from Cambridge Trust and EPSRC

    Nontrivial phase coupling in polariton multiplets

    Get PDF
    We investigate the phase coupling between spatially separated polariton condensates under nonresonant optical pulsed excitation. In the simple case of two condensates, we observe phase locking either in symmetric or antisymmetric states. We demonstrate that the coupling symmetry depends both on the separation distance and outflow velocity from the condensates. We interpret the observations through stimulated relaxation of polaritons to the phase configuration with the highest occupation. We derive an analytic criterion for the phase locking of a pair-polariton condensate and extend it to polariton multiplets. In the case of three condensates, we predict theoretically and observe experimentally either in-phase locking or the appearance of phase winding with phase differences of �2π/3 between neighbors. The latter state corresponds to a vortex of winding number �1 across the three polariton condensates..P. G. L. and A. V. K. acknowledge EPSRC through Programme Grant on Hybrid Polaritonics EP/M025330/1 and EP/F026455/1 for co-supporting this work. N. G. B acknowledges financial support by the Ministry of Education and Science of the Russian Federation 1425320 (Project DOI: RFMEFI58114X0006). Y. G. R. acknowledges financial support by CONACYT (Mexico) under Grant No. 251808

    Nonresonant optical control of a spinor polariton condensate

    Get PDF
    We investigate the spin dynamics of polariton condensates spatially separated from and effectively confined by the pumping exciton reservoir. We obtain a strong correlation between the ellipticity of the non-resonant optical pump and the degree of circular polarisation (DCP) of the condensate at the onset of condensation. With increasing excitation density we observe a reversal of the DCP. The spin dynamics of the trapped condensate are described within the framework of the spinor complex Ginzburg-Landau equations in the Josephson regime, where the dynamics of the system are reduced to a current-driven Josephson junction. We show that the observed spin reversal is due to the interplay between an internal Josephson coupling effect and the detuning of the two projections of the spinor condensate via transition from a synchronised to a desynchronised regime. These results suggest that spinor polariton condensates can be controlled by tuning the non-resonant excitation density offering applications in electrically pumped polariton spin switches.P.G.L acknowledges support by the Engineering and Physical Sciences Research Council of UK through the Hybrid Polaritonics Programme Grant (EP/M025330/1). P.G.S. acknowledges funding from the EU Social Fund and Greek National Resources (EPEAEK II, HRAKLEITOS II), N.G.B acknowledges the financial support by Ministry of Education and Science of Russian Federation 1425320 (Project DOI: RFMEFI58114X0006). The authors acknowledge fruitful discussions with Prof. Alexey Kavokin and Dr Hamid Ohadi. The data from this paper can be obtained from the University of Southampton e-Print research repository.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by APS

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Beyond Gross-Pitaevskii Mean Field Theory

    Full text link
    A large number of effects related to the phenomenon of Bose-Einstein Condensation (BEC) can be understood in terms of lowest order mean field theory, whereby the entire system is assumed to be condensed, with thermal and quantum fluctuations completely ignored. Such a treatment leads to the Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although this theory works remarkably well for a broad range of experimental parameters, a more complete treatment is required for understanding various experiments, including experiments with solitons and vortices. Such treatments should include the dynamical coupling of the condensate to the thermal cloud, the effect of dimensionality, the role of quantum fluctuations, and should also describe the critical regime, including the process of condensate formation. The aim of this Chapter is to give a brief but insightful overview of various recent theories, which extend beyond the GPE. To keep the discussion brief, only the main notions and conclusions will be presented. This Chapter generalizes the presentation of Chapter 1, by explicitly maintaining fluctuations around the condensate order parameter. While the theoretical arguments outlined here are generic, the emphasis is on approaches suitable for describing single weakly-interacting atomic Bose gases in harmonic traps. Interesting effects arising when condensates are trapped in double-well potentials and optical lattices, as well as the cases of spinor condensates, and atomic-molecular coupling, along with the modified or alternative theories needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer Verlag
    corecore