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Abstract

We study inelastic interactions of particles with quantized vortices in superfluids by using a

semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows

for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium

nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate

the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid

helium and the obtained results can be extended to scattering of other impurities by quantized

vortices. Different energies and impact parameters of incident particles are considered. We show

that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex

during the interaction even if there is no capture. The capture criterion of an impurity is formulated

in terms of the binding energy.
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I. INTRODUCTION

In-depth understanding of the dynamics of quantum fluids, and in particular understand-

ing of processes occurring in quantum turbulence during the formation and evolution of a

vortex tangle, requires advanced theoretical modelling and precise experimental probing

techniques. Superfluid helium, being the first quantum fluid available for experiments, and

probably the most studied one, generates vorticity at the length scale of angstroms which

makes the direct observation of vortices complicated. Indirect measurements usually involve

probing vortices with impurities, which are often used as doping for subsequent optical detec-

tion. Early experiments were performed with electrons1–3 and ions4,5. Later, many types of

other impurities including molecules, molecular clusters and excimers6 were used as doping

to visualize and study quantized vortices. Modern particle image velocimetry techniques al-

low to use various kinds of micron size tracer particles to visualize flow patterns in helium7–9.

This methods allow one to trace both the normal and superfluid components (through the

interaction with vortices) and thus provide a useful tool to study two-fluid hydrodynamics10.

It is shown experimentally, that the coalescence of metal particles trapped on quantized vor-

tices may lead to the formation of centimetre long wires11,12. Such a mechanism provides

not only a way to visualize the structure of quantized vortices but also a new approach for

producing long metal nanowires. Zmeev et al. 6 have shown that a moving vortex tangle can

transport molecules through superfluid helium, so the composite particles and molecules can

be used to probe the density and orientation of the vortex tangle and lead to some new and

unusual types of matter organization with potentially peculiar properties.

Recently, nanodroplets experiments that embed single atoms and molecules into liquid

helium droplets have become a new tool to study various aspects of superfluid behaviour. In

these experiments ultracold helium works as a homogenous matrix for subsequent spectro-

scopic studies13. In the experiments of Gomez et al. 14 femtosecond x-ray coherent diffractive

imaging technique was used to demonstrate the existence of vortex arrays in helium droplets

through the observation of Bragg patterns. Xenon atoms were used as doping in this ex-

periments. The analysis revealed an unusual form of droplets and line associations of xenon

atoms which was explained by the formation of vortices in a rotating helium droplet with

subsequent trapping of the xenon atoms at the vortex cores.

Most commonly used theoretical approach to study the static behavior of impurities
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in nanodroplets is based on DFT calculations15. It is particularly successful in finding

the minimal energy configurations and so capable of describing the various aspects of the

particle-vortex interaction. The dopant of choice to detect vortices by means of spectroscopic

experiments is discussed in Ancilotto et al. 16 where the adsorption properties of different

atomic impurities are compared. This approach was used to study vortex array equilibrium

configurations in rotating nanodroplets, the properties of xenon chains trapped by the vortex

lines, and to explain shapes and surprising stability of nanodroplets17,18.

Despite the large amount of studies, the details of particle-vortex scattering and especially

processes which take place at the vortex core during the interaction are not well understood

firstly, because of the interatomic distances involved, secondly, because there is no first prin-

ciples models that allow one to describe such a dynamics correctly. Minimalistic models of

particles moving in superfluids at zero temperature usually assume that the Bernoulli’s force

is a dominant one and that it adequately describes the motion far from the vortex cores10.

Close to the vortex, substitution energy based analysis is often used to explain the exis-

tence of the potential energy barrier with certain parameters which define the capture and

escape probabilities19,20. At the same time, 3D simulations based on the Gross-Pitaevskii

equation21 and the self-trapping model Gross 22 and Clark 23 demonstrate that the capture

of an electron by a quantized vortex is accompanied by the emission of Kelvin waves which

propagate along the vortex core and carry a certain portion of energy with them. It makes

the particle-vortex scattering process inelastic and renders more detailed energy redistri-

bution analysis. Non-elasticity of the trapping process is similar to inelastic scattering of

electrons on molecules, where electrons can be captured by molecules, as a result of internal

energy redistribution through the electron-phonon coupling mechanism, forming long-living

negative ions.

Xenon particles used as doping in the experiments of Gomez et al. 14 are very different

from electrons, considered in Berloff and Roberts 21 . Electron in helium, through its zero-

point motion, forms an electron bubble of a radius of about 16 Å, that brings about a

large (in comparison with the electron) effective mass and the distortion of the soft bubble

boundary. This effect for the electrically neutral xenon is minimal and we expect its radius

in helium to be of the order of the size of vortex cores. It results in a significant difference

of substitution energies of electrons and xenon atoms. Moreover, atoms are much heavier

than electrons and can potentially produce more disturbance along the vortex lines when
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FIG. 1. A snapshot of the one-dimensional cross-sections of the matter field ψ and the wavefunction

ϕ along the particle-vortex interaction line. The left drop in the modulus of the amplitude of ψ

corresponds to the quantized vortex, the right drop corresponds to the position of the xenon atom.

The plots of the real and imaginary part of ϕ are given to indicate that the atom is moving towards

the vortex.

used as doping.

In this paper we develop ideas formulated in21 to study scattering of Xe atoms by quan-

tized vortices in different regimes. We shall elucidate the role of the binding energy and

attachment/detachment criteria. The paper is organized as following. We present the model

representing the mathematical equivalent of the Landau two-fluid theory which is the basis

for our numerical and analytical study in Section II. We discuss motion of a xenon atom

next to a straight line quantized vortex and analyze various scenarios of the impurity-vortex

interactions in Section III. We conclude with Section IV summarizing the main findings.

II. MODELLING OF THE VORTEX-IMPURITY INTERACTIONS

A useful approach in modelling the dynamics and interactions of particles with quantized

vortices was originally formulated by Gross24. In this approach the nonlinear Schrödinger

equation (NLSE) also known as Gross-Pitaevskii equation (GPE) which describes the wave-

function of a Bose-Einstein condensate is coupled with the linear Schrödinger equation for
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FIG. 2. (Color online) Visualization of two scattering processes with (the top row) and without

(the bottom row) trapping. Initially the impurity is located 11 [Å] away from the vortex and

moving with an initial kinetic energy 0.16 [meV] (the top row) or 0.38 [meV] (the bottom row).

The panels (a) and (e) show the trajectories of the atom (blue line) and the vortex (grey line).

Other panels show two-dimensional cross sections of the modulus of the amplitude of the fluid

|ψ(x, 0, z)| at different moments of time. Small three-dimensional insets show the corresponding

isosurfaces |ψ(x, y, z)| = 0.3ψ∞.

the particle’s wavefunction. In reality only about 10% of superfluid helium is in a con-

densed phase and the fluid is dominated by many-body effects, so its approximation by the

condensate order parameter is at best phenomenological. It was later demonstrated25 that

the NLSE in the context of the semi-classical matter field description corresponds to the

Landau two-fluids model and, therefore, describes both the superfluid and the normal fluid

as long as the low occupancy modes and their coupling to the highly occupied modes are

neglected. The framework of the coupled GP-type equation for the superfluid and normal

fluid components and the equation for the particle’s wavefuction can therefore be used at

finite temperature. We can further remedy this description and incorporate the equation

of state correct for the superfluid helium using a higher order NLSE26,27. The higher or-

der nonlinearity appears for dense fluids with the equation of state given by a polynomial

expression28. Such an equation is mathematically equivalent to the Landau two-fluid model

and allows one, in addition, to account for the processes associated with quantized vortices.
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In this sense it provides a framework to describe the behavior of superfluid helium at finite

temperatures. In the Appendix A we show how to recover the Landau two-fluid model from

our theory.

We formulate the Hamiltonian of the system by introducing various contributions: the

kinetic and internal energies of superfluid helium Ekin and Eint, the particle-helium inter-

action energy Eh (which is the most significant in the healing layer between the particle

and the fluid), the energy of the xenon particle Ep (it includes the kinetic energy of motion

Epk, which will be discussed later, and the zero-point energy) and explicitly introducing the

Lagrange multiplier (the chemical potential) µ in the view of the constraint on the total

number of matter
∫
|ψ|2dV = N , where N is a number of bosons in the system:

E = Ekin + Eint + Eh + Ep − µN, (1)

Ekin =

∫
~2

2m
|∇ψ|2dV , (2)

Eint =

∫
εint(|ψ|2)dV , (3)

Eh =

∫
U0|ψ|2|ϕ|2dV , (4)

Ep =

∫
~2

2M
|∇ϕ|2dV . (5)

Here m and M are the masses of the helium atom and the xenon atom, respectively, ψ is

classical complex matter field which describes the superfluid and the normal fluid compo-

nents, ϕ is the wave function of the particle. The parameter U0 = 2πl~2/M∗ is the local

He-Xe interaction potential strength, where l = 3.4 [Å] is the He-Xe scattering length29.

This value is also close to the sum of the Van der Waals radii of xenon and helium atoms.

M∗ is the reduced mass of the interaction.

The internal energy functional is based on the phenomenological equation of state of

liquid helium15,27 and has the form

εint(n) = −V0

2
n2 − V1

3
n3 +

V2

4
n4, (6)

where n = |ψ|2. Coefficients V0 = 719 [KÅ
3
kb], V1 = 3.63 · 104 [KÅ

6
kb] and V2 = 2.48 ·

106 [KÅ
9
kb] are chosen to reproduce the binding energy, the density and the sound velocity of

liquid helium28. The Hamiltonian of Eq. (1) was used in Berloff et al. 27 and Pshenichnyuk 30

to study the multiplication of vortex rings in superfluid during pressure oscillations.
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Performing a variation of the full energy E with respect to ψ∗ and ϕ∗ we get the system

of equations, where the first one we will refer to as the NLSE-7:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + U0|ϕ|2ψ+

+(−V0|ψ|2 − V1|ψ|4 + V2|ψ|6)ψ − µψ,
(7)

i~
∂ϕ

∂t
= − ~2

2M
∇2ϕ+ U0|ψ|2ϕ. (8)

Function ϕ is normalized by
∫
|ϕ|2dV = 1. Away from the impurity the fluid wavefunction

acquires its ground state value ψ = ψ∞ fixing the chemical potential to µ = −V0ψ
2
∞ −

V1ψ
4
∞ + V2ψ

6
∞. For superfluid helium at atmospheric pressure ρ∞ = mψ2

∞ = 145.2 [kg/m3].

The healing length, ξ, is given by the characteristic length-scale on which fluid heals itself

to the unperturbed value from zero value and is determined by matching the kinetic and

the potential energy of interactions ξ = ~/
√

2mµ = 0.92 [Å]. This value also defines the

characteristic radius of vortex cores.

We nondimentionalize the system of Eqs. 7 and 8 by x → ξx, t → ξ2m
~ t, ψ → ψ∞ψ,

ϕ → ξ−3/2ϕ and numerically integrate it using the 4-th order space discretization and the

4-th order Runge-Kutta time propagation. Scattering processes are modelled in a compu-

tational box of the size (37.5ξ)3 with the resolution of 4 points per healing length ξ. Before

the beginning of the dynamical computation, the initial guess for ψ and ϕ is optimized using

the imaginary time evolution for a few time steps21. The initial kinetic energy is given to

the particle by multiplying its wavefunction ϕ by the factor eik·r. A typical one-dimensional

cross-section of the fields prepared by this procedure is shown on Fig. 1, where the initial

velocity of the particle points towards the vortex along the plotted axis. The figure shows

the fluid and the particle amplitudes and oscillating real and imaginary parts of the parti-

cle’s wavefunction. Two minima in the fluid’s amplitude correspond to the vortex and the

depletion due to the repulsive interactions with the impurity.

For comparison, we have also performed computations using a simple classical model for

the interaction of the particle with a vortex. It is based on the theory developed in Poole

et al. 10 and Sergeev et al. 31 to study the motion of tracer particles in superfluid helium in

the presence of quantized vortex lines. This approach takes into account a number of forces

which are associated with both superfluid and normal components of superfluid helium. At

sufficiently low temperatures (below 1 K) where the superfluid component dominates, this
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TABLE I. Binding energies ∆E0 of the xenon atom and the electron attached to the quantized

vortex. Values are obtained using stationary numerical computations. Corresponding energy terms

and their contributions to the total binding energy are shown.

∆E0, meV ∆Ekin, meV ∆Eint, meV ∆Eh, meV ∆Ep, meV

Xenon 0.19 0.10 (53%) 0.01 (5%) 0.03 (16%) 0.05 (26%)

Electron 6.46 5.48 (85%) 0.53 (8%) 0.03 (<0.5%) 0.42 (7%)

approach reduces to the Newton equation of motion for the xenon atom with the dominating

effect coming from the Bernoulli’s force that appears as the result of the existence of the

pressure gradients, produced by the inhomogenious velocity field of the vortex. The equation

of motion reads

M
dvp
dt

=

∫
S

P (r)n̂dS, (9)

where P (r) is the superfluid pressure field, n̂ is the unit vector normal to the surface of

the particle S and the integral is taken over the impurity’s surface which is assumed to be

spherical with the radius 2.4 Å. This value is close to the Van der Waals radii of xenon atom

and is consistent with the scattering length used in the NLSE-7 modeling. Being based on

the classical Euler equations this theory can’t handle properly the capture of particles by

vortex lines10 as it can describe only elastic scattering and the particle’s motion away from

any vortex cores.

III. INTERACTIONS OF THE VORTEX WITH A MOVING IMPURITY

It is energetically favourable for a particle to be captured by a vortex21,32 since the

particle-vortex binding energy, ∆E0, defined as the difference between the energy of the

system when the vortex and the particle are far away from each other and the energy of

the particle located on the vortex core, is positive. Both energies have the same logarithmic

divergencies linked to the divergence of the energies of the vortex velocity field which falls

as ~/mr with the distance r away from the vortex. The standard approach to deal with

such integrals is to introduce a finite radius, R, of integration, which gives the energy of the
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FIG. 3. (Color online) Time evolution of kinetic energies of particles during the scattering events

for different initial velocities. The insets show (a) the corresponding trajectories of the impurity

and (b) the corresponding time evolutions of the kinetic energy based on the classical Bernoulli’s

force calculations. Curves in the inset (b) are plotted in the same time/energy window as the main

figure.
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vortex line in the NLSE-7 to be (see Appendix B for derivation)

Evort = Lπψ2
∞
~2

m
ln

(
1.39R

ξ

)
, (10)

where L is the length of the straight line vortex. The logarithmic divergencies of the vortex-

particle complex and the vortex line cancel out to give proper integrals that are evaluated

numerically to give ∆E0 = 0.19 meV for the xenon atom and ∆E0 = 6.46 meV for the

electron bubble, see Table I. We have also considered various energy contributions to the

binding energy to show that the main contribution comes from the kinetic energy: when

trapped the impurity replaces a significant volume of circulating fluid19,21. The second

contribution to ∆E0 comes from the zero-point energy of the particle Ep (the particle doesn’t

move and there is no kinetic energy component in Ep). It is connected with the confinement

radius of its wave function and the uncertainty principle. Since the vortex core is ”hollow”

inside it provides a weaker confinement than the bulk helium, decreasing the uncertainty

in momentum and the zero-point energy. The density of the xenon atom captured by the

vortex has an ellipsoidal shape, in contrast with the spherical shape in the bulk. Changing of

the form and staying inside the vortex core rearranges the healing layer between the particle

and the fluid, which decreases the healing energy Eh as well. The internal energy change

∆Eint is negligible.

When the xenon atom approaches the vortex core and gets trapped it releases a portion

of energy ∆E0. In comparison with a weakly interacting condensate modelled by the GPE

a system described by the NLSE-7 is not as compressible, so only a negligible amount of

energy is converted into sound waves33. The dominant effect is the generation of the Kelvin

waves along the vortex line, carrying the excess energy away from the interaction site21. The

emission of the Kelvin waves plays an important role during the scattering of xenon atoms

on vortices, when particles possess some initial kinetic energy. If the particle’s kinetic energy

is large enough the particle may pass through the vortex. Since some portion of the full

energy stay locked in the Kelvin waves, the impurity should sacrifice the same amount of its

kinetic energy, and slow down or get trapped. This makes the particle-vortex scattering a

purely inelastic process. It has a certain resemblance to the well-studied inelastic scattering

of electrons on molecules, where vibrational modes of the molecule may accept a certain

portion of energy, keeping the electron trapped for a long time34–37. The difference between

our case and the scattering of electrons on molecules is that the spectrum of the Kelvin
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waves is continuous38,39 (while molecular electronic and vibrational spectra are discrete) and

the particle-vortex interaction is likely to be non-resonant. A discrete spectrum can be

introduced in our system by considering a narrow channel where the vortex line is pinned

by the container walls and therefore only certain wavelengths of the Kelvin waves can be

exited.

First we consider a head-on collision of the impurity with the vortex line. On Fig. 2

we present the visualization of two scattering processes with (the top row) and without

(the bottom row) trapping. The vortex line is initially located along the vertical axis. The

particle is placed 11 Å away from the vortex, with the initial velocity directed towards the

vortex. The left panels in each row show the trajectory of the particle (blue line), recorded

at the position of particle’s density maximum. Motion of a selected point of the vortex

core (slightly above the particle) is shown by the grey line. The maximum amplitude of the

Kelvin waves generated is approximately 1 Å in this case. The Kelvin waves appear in both

cases whether or not the trapping took place. If the particle detaches from the vortex core

we also detect its vibrational motion40. Other panels on Fig. 2 illustrate the dynamics of

the vortex interactions with the impurity via the time snapshots of the absolute value of the

matter field |ψ|.

On Fig.3 the kinetic energy of the particle41

Epk =
~2

2M

[
Im

∫
ϕ∗∇ϕdV

]2

(11)

is shown as the function of time for the different initial velocities of the impurity. On Fig.

3(a) we present corresponding trajectories of the impurity. The initial position of the vortex

is shown with a black dot. In three cases out of five, which correspond to lower initial

energies, the xenon atom gets trapped. Figure 3(b) shows the results obtained for the same

initial configurations using the Bernoulli force based classical approach as described in the

previous section. Such a minimalistic model draws a purely elastic scattering picture in

a centrally symmetric potential. The Bernoulli’s force causes particle to accelerate when

it approaches the vortex and to decelerate when it moves away from it. The width and

position of the resulting peak depends on the initial velocity. There are obvious similarities

with NLSE-7 results with respect to the positions of peaks which indicates that the Bernoulli

force accurately describes the dynamics of particles outside of the interaction region (where

the separation between the impurity and the vortex is larger than 5Å, according to our
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simulations). The height of the peaks is higher in classical computations, as the energy in

our model is being continuously redistributed between various terms. The trapped particles

oscillate around the vortex core along elliptic trajectories with an amplitude of about 5Å.

Their kinetic energy time dependence contains multiple maxima as it is shown on Fig.3.

During such motion the particle’s energy continuously dissipates and the amplitude of peaks

goes down in time. It is accompanied by the increase in the healing energy while no further

increase in the Kelvin waves amplitude is detected. The time evolution for trapped particles

is computed for 1 [ns] to ensure that the particle does not detach.

When the particle does not become trapped there is an energy drop ∆Epk≈0.2 [meV],

given by the difference of the initial and final kinetic energies, characterizing the non-

elasticity of the process. The value of ∆Epk within the accuracy of the simulation coincides

with the binding energy ∆E0 which shows that the portion of energy equal to ∆E0 is be-

ing transferred to the Kelvin waves during the interaction causing the drop in the kinetic

energy of the particle. If the xenon initial energy is lower than ∆E0 it can not escape and

gets trapped by the vortex line. This value defines the capture criteria for xenon atoms by

vortices in superfluid helium at low temperatures.

In some regimes we observe the splitting of the particle wave function, ϕ, between two

spacial locations. During the detachment, small part of the particle wave function may

remain attached to the vortex. This reflects the probabilistic nature of the process, and is

interpreted as the existence of some finite probability of the particle to get captured even at

high energies. In cases which are characterized as scattering regimes with no trapping this

probability is usually less than 5 percent (defined as the portion of the trapped mass of the

particle). We stress that despite the fact that the superfluid is modelled in terms of classical

fields, for the particle we have usual linear Shrödinger equation, which describes quantum

effects typical for a particle in a potential well. Nevertheless, the interaction picture in our

models is more classical than quantum, there exists a sharp border between attachment and

detachment regimes.

Next we consider the scattering and trapping of the xenon atom which is off-set from a

vortex line in the direction of its motion. As was shown for the head-on collision, the main

contribution to the binding energy comes from ∆Ekin (see Table I), which represents the

kinetic energy of superfluid displaced from the vortex velocity field by the particle. The value

of ∆Ekin is expected to be smaller than the one in Table I if the particle is placed at a certain
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distance from the vortex core, since the superfluid velocity decreases with this distance. It

should be reflected in scattering events when the particle passes at a certain distance from

the core. On Fig. 4 we present results for different values of an impact parameter d (the

minimal distance between the straight line trajectory of the particle in the absence of the

vortex and position of the vortex core). The particle trajectories are plotted on Fig. 4(a).

It is clearly seen how the inelastic energy drop, ∆Epk, decreases with d. This dependence is

plotted on Fig. 4(b) by the solid line. We have shown above that for the head-on collision

∆Epk coincides with the binding energy ∆E0. It is impossible to use the same method of

evaluation for ∆E0 when d 6=0, since such configurations are not steady. In Fig. 4 (b) we

show rough numerical estimations how ∆Ekin (dashed line) and Ep (dotted line) depend on

the distance from the core. Ep is associated with the zero-point energy variation during the

interaction, and not with the kinetic energy of the particle. Their sum constitute almost

80% of ∆E. This analysis again points out that the effective radius of interaction for xenon

atoms and quantized vortices in helium is about 5 Å (see Fig. 4(b)).

The theory described in this manuscript can be easily extrapolated to other types of

particles. To illustrate, in Table I we compare binding energies ∆E0 with corresponding

components for the xenon and an electron. The fraction of ∆Ekin in the binding energy is

much lager for the electron than for the xenon in the view of the large radius of the electron

bubble as compared to the xenon radius and therefore larger volume of displaced fluid. The

value of ∆Ekin obtained here for the electron is close to the one obtained using the GPE21.

For the basic analysis of the electron capture we may assume ∆E0 ≈ ∆Ekin and compute it

using the model suggested by Parks and Donnelly 19 .

CONCLUSION

In this manuscript we studied the inelastic scattering of xenon atoms on quantized vor-

tices in liquid helium. The theoretical framework based on the modified version of the

self-trapping wave function approach is used to model the dynamics of the vortex-particle

interactions. It is argued that NLSE-7 as a model of superfluid helium is mathematically

analogous to the Landau two-fluid model and in this sense can be used to model the dy-

namical effects in superfluid helium. It is shown that Kelvin waves are excited along the

vortex filament during the interaction with a particle whether or not the particle is trapped
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at the vortex core, keeping a certain portion of energy and providing a mechanism for the

inelastic trapping or scattering of particles. The simple capture criteria for xenon atoms is

formulated. It states that in head-on collisions the particle is captured if its kinetic energy

is less than the binding energy, which is equal to 0.2 meV for xenon. For the nonzero impact

parameter d the capture criteria becomes weaker and starting from d≈6 Å practically no

capture occurs.

Appendix A: Derivation of the Landau two-fluid model from classical field equations

The idea to use classical fields approximation to model superfluid helium can be traced

back to the works of Putterman and Roberts42. Using the scale separation in GPE they

derived an equivalent set of kinetic equations which describe both the condensate and the

thermal cloud, as well as their interaction, so the classical field ψ is no longer directly

associated with the condensate. Instead, the separation of scales leads to association of the

slowly varying, large-scale, background field with the superfluid component, and the short,

rapidly evolving excitations with the normal component. Therefore, ψ in this context gives

rise to both components. This result allows one to generalize the classical field approach

and perform finite temperature GPE based computations25,43. Another important step in

this direction was made by demonstrating the equivalence of GPE and the Landau two-

fluid model using the local gauge transformation44–46. Gauge field in this case is related to

additional macroscopic degrees of freedom and allows one to switch from one-fluid to two-

fluid system. In this section we use the similar procedure to demonstrate the equivalence of

NLSE-7 and Landau two-fluid model.

The Lagrangian density for NLSE-7 reads

L0 =
i~
2

[
ψψ̇∗ − ψ∗ψ̇

]
+

~2

2m
|∇ψ|2

−V0

2
|ψ|4 − V1

3
|ψ|6 +

V2

4
|ψ|8.

(A1)

We apply the local gauge transformation ψ → ψeiα(r,t)m/~, which provides 4 additional

independent variables for the nonzero temperature two-fluid model description. Newly in-

troduced scalar and vector fields are denoted as ξ ≡ α̇(r, t), A ≡ −∇α(r, t). They appear

14



as additional terms in the Lagrangian

L1 = L0 +mξ|ψ|2 +
m

2
A2|ψ|2

− ~
2i

A · [ψ∗∇ψ − ψ∇ψ∗]
(A2)

Switching to hydrodynamic variables ρ and φ such that

ψ =

√
ρ(r, t)

m
eiφ(r,t)m/~, (A3)

we get

L0 = ρφ̇+
~2

8m2ρ
(∇ρ)2 +

ρ

2
(∇φ)2

+

{
−V0

2

ρ2

m2
− V1

3

ρ3

m3
+
V2

4

ρ4

m4

}
,

(A4)

L1 = L0 +
A2ρ

2
+ ρξ − ρA · ∇φ. (A5)

According to Coste 44 we link scalar and vector fields with physical variables in a following

way

ξ = η(ρ, s) + vn ·A, (A6)

A = χ(ρ, s)(∇φ− vn), (A7)

where χ and η are Galilean invariant scalars which are functions of density and entropy only.

Thus, the new variables which we add to the model are the normal fluid velocity vn and the

entropy s. The Lagrangian reads (curly brackets are used to highlight the nonlinear part of

NLSE-7)

L1 = ρφ̇+
ρ

2
(∇φ)2 +

~2

8m2ρ
(∇ρ)2

+

{
−V0

2

ρ2

m2
− V1

3

ρ3

m3
+
V2

4

ρ4

m4

}
+ ρη + ρχvn · (∇φ− vn)

+
ρχ

2
(χ− 2)(∇φ)2 + ρχ(1− χ)∇φ · vn +

ρ

2
χ2v2

n

(A8)

The Euler-Lagrange equation for φ is

∂L1

∂φ
−∇ ∂L1

∂(∇φ)
− ∂

∂t

∂L1

∂φ̇
= 0. (A9)

Substituting L1 and computing derivatives we get

∂ρ

∂t
+∇ ·

[
vnρχ(2− χ) +∇φρ(1− χ)2

]
= 0. (A10)

15



Recalling that vs = ∇φ and introducing notations ρ(1 − χ)2 = ρs and ρχ(2 − χ) = ρn we

obtain the first equation of Landau’s model (the equation for mass conservation).

The second Landau equation (the equation for the superfluid velocity) is derived from

the Euler-Lagrange equation for ρ (one should recall that both χ and ξ are functions of ρ)

∂φ

∂t
+

1

2
(∇φ)2 + µ̃ =

~2

2m2

[
(∇ρ)2

4ρ2
+
∇2ρ

2ρ

]
, (A11)

where

µ̃ ≡ η + ρ
∂η

∂ρ
+

{
− V0

m2
ρ− V1

m3
ρ2 +

V2

m4
ρ3

}
−1

2

[
2ρ(1− χ)

∂χ

∂ρ
+ χ(2− χ)

]
(vn − vs)

2.

(A12)

The difference of this result with the one obtained in Salman et al. 46 is contained in µ̃.

Polynomial function of ρ in curly brackets appears instead of single linear term in GPE.

This doesn’t change the main logic of the original derivation.

Remaining two equations of the two-fluid model should be derived from additional con-

straints which appear as Lagrange multipliers in L1 and correspond to the conservation of

entropy and relative fluid velocity. This part of the derivation is the same for GPE and

NLSE-744.

Appendix B: Energy of the vortex in NLSE-7

Stationary NLSE-7 reads

− ~2

2m
∇2ψ + (−V0|ψ|2 − V1|ψ|4 + V2|ψ|6)ψ − µψ = 0. (B1)

We switch to cylindrical coordinates (r,Φ,z) and search the vortical solution in the form28

ψ = eiΦ|ψ0(r)|. (B2)

Using the dimensionless units such that |ψ0| = f(η)ψ∞ and r = ηξ along with definitions of

chemical potential µ and healing length ξ given in the section II we can derive the following

equation for the radial part f of the vortical solution of Eq. (B2)

1

η

d

dη

(
η
df

dη

)
−
(

1

η2
+ 1

)
f + c1f

3 + c2f
5 − c3f

7 = 0, (B3)
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FIG. 5. Dimensionless radial part f of vortical solutions in NLSE-7 and GPE models as a function

of dimensionless coordinate η. The superfluid density is given by n = f2ψ2
∞

where c1 = 2.19329, c2 = 2.42001 and c3 = 3.61330. To obtain the details of the vortex

core structure this equation is solved numerically using the shooting method with initial

conditions f(0) = 0, df(0)
dη

= k. Parameter k is chosen to fulfil another known physical

boundary condition f(∞) = 1. The resulting function is plotted on Fig. 5 along with the

vortex amplitude of the GPE for comparison.

The energy of the vortex is given by the full Hamiltonian of the system, where ψ represents

the vortex solution computed above

Ev =

∫ (
~2

2m
|∇ψ|2 − V0

2
|ψ|4 − V1

3
|ψ|6+

+
V2

4
|ψ|8 − µ|ψ|2

)
dV − Egs.

(B4)

The ground state energy Egs is given by the Eq. (1) with ψ = ψ∞. Substituting the solution

of Eq. (B2) and using dimensionless variables as above we can express this integral in terms

of f

Ev =
πLψ2

∞~2

m

R/ξ∫
0

{(
df

dη

)2

+

(
1

η2
+ 1

)
f 2

−c1

2
f 4 − c2

3
f 6 +

c3

4
f 8 − c4

}
ηdη,

(B5)

where c4 = 0.00001. This formula gives the energy of the vortex enclosed in a cylindrical

17



volume of length L and radius R.

If we consider large R � ξ this formula can be significantly simplified, since f → 1 fast

with R. We simply consider f = 1 when R > a, where a is some constant. The integral

splits into two parts and the second one can be taken analytically. The resulting formula

reads

Ev =
πLψ2

∞~2

m
ln

(
1.39R

ξ

)
. (B6)

The numerical coefficient 1.39 obtained here differs from the coefficient in the similar GPE

formula which is equal to 1.4628.
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