4 research outputs found

    CTNSmRNA as a potential treatment for nephropathic cystinosis

    Get PDF
    Messenger RNA (mRNA) therapies are emerging in different disease areas, but have not yet reached the kidney field. Our aim was to study the feasibility to correct the genetic defect in nephropathic cystinosis using synthetic mRNA. Cystinosis is a prototype disorder of proximal tubular dysfunction caused by mutations in the CTNS gene, encoding the lysosomal cystine-H+ symporter cystinosin, and leading to cystine accumulation in all cells of the body. The kidneys are the first and most severely affected organs, presenting glomerular and proximal tubular dysfunction. Cysteamine is the current therapeutic standard that reduces cellular cystine levels, but has many side effects and does not restore kidney function. Here, we show that synthetic mRNA is safe and effective to reintroduce functional cystinosin using lipofection in CTNS-/- kidney cells and following direct injection in ctns-/- zebrafish larvae. CTNS mRNA therapy results in prompt lysosomal expression of the functional protein and decreases cellular cystine accumulation for up to 14 days. In the ctns-/- zebrafish, CTNS mRNA therapy improves proximal tubular reabsorption, reduces proteinuria, and restores brush border expression of the multi-ligand receptor megalin. We propose that mRNA-based therapy, if sufficient kidney targeting can be achieved, may be a new approach to treat cystinosis

    Genetic Renal Diseases: The Emerging Role of Zebrafish Models

    No full text
    The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.status: publishe

    Cysteamine–bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis

    Get PDF
    Nephropathic cystinosis is a severe monogenic kidney disorder caused by mutations in CTNS, encoding the lysosomal transporter cystinosin, resulting in lysosomal cystine accumulation. The sole treatment, cysteamine, slows down the disease progression, but does not correct the established renal proximal tubulopathy. Here, we developed a new therapeutic strategy by applying omics to expand our knowledge on the complexity of the disease and prioritize drug targets in cystinosis. We identified alpha-ketoglutarate as a potential metabolite to bridge cystinosin loss to autophagy, apoptosis and kidney proximal tubule impairment in cystinosis. This insight combined with a drug screen revealed a bicalutamide–cysteamine combination treatment as a novel dual-target pharmacological approach for the phenotypical correction of cystinotic kidney proximal tubule cells, patient-derived kidney tubuloids and cystinotic zebrafish

    Cysteamine–bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis

    No full text
    Nephropathic cystinosis is a severe monogenic kidney disorder caused by mutations in CTNS, encoding the lysosomal transporter cystinosin, resulting in lysosomal cystine accumulation. The sole treatment, cysteamine, slows down the disease progression, but does not correct the established renal proximal tubulopathy. Here, we developed a new therapeutic strategy by applying omics to expand our knowledge on the complexity of the disease and prioritize drug targets in cystinosis. We identified alpha-ketoglutarate as a potential metabolite to bridge cystinosin loss to autophagy, apoptosis and kidney proximal tubule impairment in cystinosis. This insight combined with a drug screen revealed a bicalutamide–cysteamine combination treatment as a novel dual-target pharmacological approach for the phenotypical correction of cystinotic kidney proximal tubule cells, patient-derived kidney tubuloids and cystinotic zebrafish
    corecore