6,056 research outputs found
Structural Properties of the Disordered Spherical and other Mean Field Spin Models
We extend the approach of Aizenman, Sims and Starr for the SK-type models to
their spherical versions. Such an extension has already been performed for
diluted spin glasses. The factorization property of the optimal structures
found by Guerra for the SK model, which holds for diluted models as well, is
verified also in the case of spherical systems, with the due modifications.
Hence we show that there are some common structural features in various mean
field spin models. These similarities seem to be quite paradigmatic, and we
summarize the various techniques typically used to prove the structural
analogies and to tackle the computation of the free energy per spin in the
thermodynamic limit.Comment: 24 page
DNA methylation profiling of the human major histocompatibility complex: A pilot study for the Human Epigenome Project
The Human Epigenome Project aims to identify, catalogue, and interpret genome-wide DNA methylation phenomena. Occurring naturally on cytosine bases at cytosine-guanine dinucleotides, DNA methylation is intimately involved in diverse biological processes and the aetiology of many diseases. Differentially methylated cytosines give rise to distinct profiles, thought to be specific for gene activity, tissue type, and disease state. The identification of such methylation variable positions will significantly improve our understanding of genome biology and our ability to diagnose disease. Here, we report the results of the pilot study for the Human Epigenome Project entailing the methylation analysis of the human major histocompatibility complex. This study involved the development of an integrated pipeline for high-throughput methylation analysis using bisulphite DNA sequencing, discovery of methylation variable positions, epigenotyping by matrix-assisted laser desorption/ionisation mass spectrometry, and development of an integrated public database available at http://www.epigenome.org. Our analysis of DNA methylation levels within the major histocompatibility complex, including regulatory exonic and intronic regions associated with 90 genes in multiple tissues and individuals, reveals a bimodal distribution of methylation profiles (i.e., the vast majority of the analysed regions were either hypo- or hypermethylated), tissue specificity, inter-individual variation, and correlation with independent gene expression data
SO(5) superconductor in a Zeeman magnetic field: Phase diagram and thermodynamic properties
In this paper we present calculations of the SO(5) quantum rotor theory of
high-T superconductivity in Zeeman magnetic field. We use the spherical
approach for five-component quantum rotors in three-dimensional lattice to
obtain formulas for critical lines, free energy, entropy and specific heat and
present temperature dependences of these quantities for different values of
magnetic field. Our results are in qualitative agreement with relevant
experiments on high-T cuprates.Comment: 4 pages, 2 figures, to appear in Phys. Rev. B, see http://prb.aps.or
Sharp Bounds in Stochastic Network Calculus
The practicality of the stochastic network calculus (SNC) is often questioned
on grounds of potential looseness of its performance bounds. In this paper it
is uncovered that for bursty arrival processes (specifically Markov-Modulated
On-Off (MMOO)), whose amenability to \textit{per-flow} analysis is typically
proclaimed as a highlight of SNC, the bounds can unfortunately indeed be very
loose (e.g., by several orders of magnitude off). In response to this uncovered
weakness of SNC, the (Standard) per-flow bounds are herein improved by deriving
a general sample-path bound, using martingale based techniques, which
accommodates FIFO, SP, EDF, and GPS scheduling. The obtained (Martingale)
bounds gain an exponential decay factor of in
the number of flows . Moreover, numerical comparisons against simulations
show that the Martingale bounds are remarkably accurate for FIFO, SP, and EDF
scheduling; for GPS scheduling, although the Martingale bounds substantially
improve the Standard bounds, they are numerically loose, demanding for
improvements in the core SNC analysis of GPS
Quantum description of spherical spins
The spherical model for spins describes ferromagnetic phase transitions well,
but it fails at low temperatures. A quantum version of the spherical model is
proposed. It does not induce qualitative changes near the phase transition.
However, it produces a physical low temperature behavior. The entropy is
non-negative. Model parameters can be adapted to the description of real
quantum spins. Several applications are discussed. Zero-temperature quantum
phase transitions are analyzed for a ferromagnet and a spin glass in a
transversal field. Their crossover exponents are presented.Comment: 4 pages postscript. Revised version, to appear in Phys. Rev. Let
N-dimensional electron in a spherical potential: the large-N limit
We show that the energy levels predicted by a 1/N-expansion method for an
N-dimensional Hydrogen atom in a spherical potential are always lower than the
exact energy levels but monotonically converge towards their exact eigenstates
for higher ordered corrections. The technique allows a systematic approach for
quantum many body problems in a confined potential and explains the remarkable
agreement of such approximate theories when compared to the exact numerical
spectrum.Comment: 8 pages, 1 figur
Thermo-oxidative Stability and Flammability of Three-dimensional Polymers Based on Olygocarbonate-methacrylates
By the irreversible condensation reaction of the mono-methacrylic
ester of ethylene glycol and chlorocarbonic esters of 2,2-dimethylpropandiol-
1,3 and 2,2-dimethylene chloride-propandiol-1,3,
two olygocarbonate methacrylate (OCM-I and -II, respectively)
containing unsaturated ends were synthesised. The polymerization
of OCM-I and OCM-II in the presence of cumene hydro.peroxide
and an accelerator gave two cross-liinked polymers Ln a yield
of 70-750/o. The thermal and thermo-oxidative decompositions of the prepared polymers were studied by the thermogravimetric method
and by characterization of the volatile pyrolysis products and the
nonvolatile polymer residue. The influence of the polymer
structure on the mechanism of the decomposition reactions in vacuo
as well as iin the presence of oxygen was discussed. The temperature
dependence of thermostabiLity was compared with some
polymer flammability parameters
Polarised target for Drell-Yan experiment in COMPASS at CERN, part I
In the polarised Drell-Yan experiment at the COMPASS facility in CERN pion
beam with momentum of 190 GeV/c and intensity about pions/s interacted
with transversely polarised NH target. Muon pairs produced in Drel-Yan
process were detected. The measurement was done in 2015 as the 1st ever
polarised Drell-Yan fixed target experiment. The hydrogen nuclei in the
solid-state NH were polarised by dynamic nuclear polarisation in 2.5 T
field of large-acceptance superconducting magnet. Large helium dilution
cryostat was used to cool the target down below 100 mK. Polarisation of
hydrogen nuclei reached during the data taking was about 80 %. Two oppositely
polarised target cells, each 55 cm long and 4 cm in diameter were used.
Overview of COMPASS facility and the polarised target with emphasis on the
dilution cryostat and magnet is given. Results of the polarisation measurement
in the Drell-Yan run and overviews of the target material, cell and dynamic
nuclear polarisation system are given in the part II.Comment: 4 pages, 2 figures, Proceedings of the 22nd International Spin
Symposium, Urbana-Champaign, Illinois, USA, 25-30 September 201
A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions
We have investigated analitycally the phase diagram of a generalized
spherical version of the Blume-Emery-Griffiths model that includes
ferromagnetic or antiferromagnetic spin interactions as well as quadrupole
interactions in zero and nonzero magnetic field. We show that in three
dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM)
or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever
the magnetic spin interactions dominate over the quadrupole interactions.
However, when spin and quadrupole interactions are important, there appears a
reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to
the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero
homogeneous external magnetic field , we find no evidence of a transition to
the state with spontaneous magnetization for FM interactions in three
dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to
that described above for zero external magnetic field, except that the critical
temperatures are now functions of . We also find two critical field values,
, at which the reentrance phenomenon dissapears and
(), above which the PM-AFM transition temperature
vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as
section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6
were improved in presentation. However, all the results remain valid.
Accepted for publication in Phys. Rev.
On the mean-field spherical model
Exact solutions are obtained for the mean-field spherical model, with or
without an external magnetic field, for any finite or infinite number N of
degrees of freedom, both in the microcanonical and in the canonical ensemble.
The canonical result allows for an exact discussion of the loci of the Fisher
zeros of the canonical partition function. The microcanonical entropy is found
to be nonanalytic for arbitrary finite N. The mean-field spherical model of
finite size N is shown to be equivalent to a mixed isovector/isotensor
sigma-model on a lattice of two sites. Partial equivalence of statistical
ensembles is observed for the mean-field spherical model in the thermodynamic
limit. A discussion of the topology of certain state space submanifolds yields
insights into the relation of these topological quantities to the thermodynamic
behavior of the system in the presence of ensemble nonequivalence.Comment: 21 pages, 5 figure
- …