119 research outputs found

    Properties of iron-modified-by-silver supported on mordenite as catalysts for nox reduction

    Get PDF
    A series of mono and bimetallic catalysts based on a Fe-Ag mixture deposited on mordenite was prepared by ion-exchange and evaluated in the catalytic activity test of the de-NOx reaction in the presence of CO/C3H6. The activity results showed that the most active samples were the Fe-containing ones, and at high temperatures, a co-promoter effect of Ag on the activity of Fe catalysts was also observed. The influence of the order of cation deposition on catalysts formation and their physicochemical properties was studied by FTIR (Fourier Transform Infrared Spectroscopy) of adsorbed NO, XANES (X-ray Absorption Near-Edge Structure), and EXAFS (Extended X-ray Absorption Fine Structure) and discussed in terms of the state of iron. Results of Fe K-edge XANES oscillations showed that, in FeMOR catalysts, iron was present in a disordered state as Fe3+ and Fe2+. In FeAgMOR, the prevailing species was Fe3+, while in the AgFeMOR catalyst, the state of iron was intermediate or mixed between FeMOR and FeAgMOR. The Fe K-edge EXAFS results were characteristic of a disordered phase, the first coordination sphere being asymmetric with two different Fe-O distances. In FeAgMOR and AgFeMOR, coordination of Fe-O was similar to Fe2O3 with a few amount of Fe2+ species. We may conclude that, in the bimetallic FeAgMOR and AgFeMOR samples, a certain amount of tetrahedral Al3+ ions in the mordenite framework is replaced by Fe3+ ions, confirming the previous reports that these species are active sites for the de-NOx reaction. Based on the thermodynamic analysis and experimental data, also, it was confirmed that the order of deposition of the components influenced the mechanism of active sites’ formation during the two steps ion-exchange synthesis

    Measuring, in solution, multiple-fluorophore labeling by combining Fluorescence Correlation Spectroscopy and photobleaching

    Get PDF
    Determining the number of fluorescent entities that are coupled to a given molecule (DNA, protein, etc.) is a key point of numerous biological studies, especially those based on a single molecule approach. Reliable methods are important, in this context, not only to characterize the labeling process, but also to quantify interactions, for instance within molecular complexes. We combined Fluorescence Correlation Spectroscopy (FCS) and photobleaching experiments to measure the effective number of molecules and the molecular brightness as a function of the total fluorescence count rate on solutions of cDNA (containing a few percent of C bases labeled with Alexa Fluor 647). Here, photobleaching is used as a control parameter to vary the experimental outputs (brightness and number of molecules). Assuming a Poissonian distribution of the number of fluorescent labels per cDNA, the FCS-photobleaching data could be easily fit to yield the mean number of fluorescent labels per cDNA strand (@ 2). This number could not be determined solely on the basis of the cDNA brightness, because of both the statistical distribution of the number of fluorescent labels and their unknown brightness when incorporated in cDNA. The statistical distribution of the number of fluorophores labeling cDNA was confirmed by analyzing the photon count distribution (with the cumulant method), which showed clearly that the brightness of cDNA strands varies from one molecule to the other.Comment: 38 pages (avec les figures

    Setting the stage: host invasion by HIV.

    Get PDF
    For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention
    corecore