181 research outputs found

    Bailey flows and Bose-Fermi identities for the conformal coset models (A1(1))N×(A1(1))N/(A1(1))N+N(A^{(1)}_1)_N\times (A^{(1)}_1)_{N'}/(A^{(1)}_1)_{N+N'}

    Full text link
    We use the recently established higher-level Bailey lemma and Bose-Fermi polynomial identities for the minimal models M(p,p)M(p,p') to demonstrate the existence of a Bailey flow from M(p,p)M(p,p') to the coset models (A1(1))N×(A1(1))N/(A1(1))N+N(A^{(1)}_1)_N\times (A^{(1)}_1)_{N'}/(A^{(1)}_1)_{N+N'} where NN is a positive integer and NN' is fractional, and to obtain Bose-Fermi identities for these models. The fermionic side of these identities is expressed in terms of the fractional-level Cartan matrix introduced in the study of M(p,p)M(p,p'). Relations between Bailey and renormalization group flow are discussed.Comment: 28 pages, AMS-Latex, two references adde

    Riccati-parameter solutions of nonlinear second-order ODEs

    Full text link
    It has been proven by Rosu and Cornejo-Perez in 2005 that for some nonlinear second-order ODEs it is a very simple task to find one particular solution once the nonlinear equation is factorized with the use of two first-order differential operators. Here, it is shown that an interesting class of parametric solutions is easy to obtain if the proposed factorization has a particular form, which happily turns out to be the case in many problems of physical interest. The method that we exemplify with a few explicitly solved cases consists in using the general solution of the Riccati equation, which contributes with one parameter to this class of parametric solutions. For these nonlinear cases, the Riccati parameter serves as a `growth' parameter from the trivial null solution up to the particular solution found through the factorization procedureComment: 5 pages, 3 figures, change of title and more tex

    Singular responses of spin-incoherent Luttinger liquids

    Full text link
    When a local potential changes abruptly in time, an electron gas shifts to a new state which at long times is orthogonal to the one in the absence of the local potential. This is known as Anderson's orthogonality catastrophe and it is relevant for the so-called X-ray edge or Fermi edge singularity, and for tunneling into an interacting one dimensional system of fermions. It often happens that the finite frequency response of the photon absorption or the tunneling density of states exhibits a singular behavior as a function of frequency: (ωthωωth)αΘ(ωωth)(\frac{\omega_{\rm th}}{\omega-\omega_{\rm th}})^\alpha\Theta(\omega-\omega_{\rm th}) where ωth\omega_{\rm th} is a threshold frequency and α\alpha is an exponent characterizing the singular response. In this paper singular responses of spin-incoherent Luttinger liquids are reviewed. Such responses most often do not fall into the familiar form above, but instead typically exhibit logarithmic corrections and display a much higher universality in terms of the microscopic interactions in the theory. Specific predictions are made, the current experimental situation is summarized, and key outstanding theoretical issues related to spin-incoherent Luttinger liquids are highlighted.Comment: 21 pages, 3 figures. Invited Topical Review Articl

    Exceptional structure of the dilute A3_3 model: E8_8 and E7_7 Rogers--Ramanujan identities

    Get PDF
    The dilute A3_3 lattice model in regime 2 is in the universality class of the Ising model in a magnetic field. Here we establish directly the existence of an E8_8 structure in the dilute A3_3 model in this regime by expressing the 1-dimensional configuration sums in terms of fermionic sums which explicitly involve the E8_8 root system. In the thermodynamic limit, these polynomial identities yield a proof of the E8_8 Rogers--Ramanujan identity recently conjectured by Kedem {\em et al}. The polynomial identities also apply to regime 3, which is obtained by transforming the modular parameter by q1/qq\to 1/q. In this case we find an A_1\times\mbox{E}_7 structure and prove a Rogers--Ramanujan identity of A_1\times\mbox{E}_7 type. Finally, in the critical q1q\to 1 limit, we give some intriguing expressions for the number of LL-step paths on the A3_3 Dynkin diagram with tadpoles in terms of the E8_8 Cartan matrix. All our findings confirm the E8_8 and E7_7 structure of the dilute A3_3 model found recently by means of the thermodynamic Bethe Ansatz.Comment: 9 pages, 1 postscript figur

    The Yang-Baxter equation for PT invariant nineteen vertex models

    Full text link
    We study the solutions of the Yang-Baxter equation associated to nineteen vertex models invariant by the parity-time symmetry from the perspective of algebraic geometry. We determine the form of the algebraic curves constraining the respective Boltzmann weights and found that they possess a universal structure. This allows us to classify the integrable manifolds in four different families reproducing three known models besides uncovering a novel nineteen vertex model in a unified way. The introduction of the spectral parameter on the weights is made via the parameterization of the fundamental algebraic curve which is a conic. The diagonalization of the transfer matrix of the new vertex model and its thermodynamic limit properties are discussed. We point out a connection between the form of the main curve and the nature of the excitations of the corresponding spin-1 chains.Comment: 43 pages, 6 figures and 5 table

    Fermionic solution of the Andrews-Baxter-Forrester model II: proof of Melzer's polynomial identities

    Get PDF
    We compute the one-dimensional configuration sums of the ABF model using the fermionic technique introduced in part I of this paper. Combined with the results of Andrews, Baxter and Forrester, we find proof of polynomial identities for finitizations of the Virasoro characters χb,a(r1,r)(q)\chi_{b,a}^{(r-1,r)}(q) as conjectured by Melzer. In the thermodynamic limit these identities reproduce Rogers--Ramanujan type identities for the unitary minimal Virasoro characters, conjectured by the Stony Brook group. We also present a list of additional Virasoro character identities which follow from our proof of Melzer's identities and application of Bailey's lemma.Comment: 28 pages, Latex, 7 Postscript figure

    Construction of exact solutions to eigenvalue problems by the asymptotic iteration method

    Full text link
    We apply the asymptotic iteration method (AIM) [J. Phys. A: Math. Gen. 36, 11807 (2003)] to solve new classes of second-order homogeneous linear differential equation. In particular, solutions are found for a general class of eigenvalue problems which includes Schroedinger problems with Coulomb, harmonic oscillator, or Poeschl-Teller potentials, as well as the special eigenproblems studied recently by Bender et al [J. Phys. A: Math. Gen. 34 9835 (2001)] and generalized in the present paper to higher dimensions.Comment: 10 page

    Renormalization group flow with unstable particles

    Get PDF
    The renormalization group flow of an integrable two dimensional quantum field theory which contains unstable particles is investigated. The analysis is carried out for the Virasoro central charge and the conformal dimensions as a function of the renormalization group flow parameter. This allows to identify the corresponding conformal field theories together with their operator content when the unstable particles vanish from the particle spectrum. The specific model considered is the SU(3)2SU(3)_{2}-homogeneous Sine-Gordon model.Comment: 5 pages Latex, 3 figure
    corecore