33 research outputs found
Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses
Acknowledgements This work was financially supported by the EC FP7 Cross-talk project (PITN-GA-2008-215553). The authors thank the Histology Platform from GABI research unit and especially Abdelhak Boukadiri for their technical support in the histology sample preparation and Marlène Héry, Charline Pontlevoy, Jerome Pottier and André Tiffoche (UE0907 IERP, Jouy en Josas) for their help during animal experiments. The authors thank Rafael Muñoz-Tamayo (INRA) for his help in performing the PCA.Peer reviewedPublisher PD
Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells
Sialic acids are negatively charged nine-carbon carboxylated monosaccharides that often cap glycans on glycosylated proteins and lipids. Because of their strategic location at the cell surface, sialic acids contribute to interactions that are critical for immune homeostasis via interactions with sialic acid-binding Ig-type lectins (siglecs). In particular, these interactions may be of importance in cases where sialic acids may be overexpressed, such as on certain pathogens and tumors. We now demonstrate that modification of antigens with sialic acids (Sia-antigens) regulates the generation of antigen-specific regulatory T (Treg) cells via dendritic cells (DCs). Additionally, DCs that take up Sia-antigen prevent formation of effector CD4+ and CD8+ T cells. Importantly, the regulatory properties endowed on DCs upon Sia-antigen uptake are antigen-specific: only T cells responsive to the sialylated antigen become tolerized. In vivo, injection of Sia-antigen–loaded DCs increased de novo Treg-cell numbers and dampened effector T-cell expansion and IFN-γ production. The dual tolerogenic features that Sia-antigen imposed on DCs are Siglec-E–mediated and maintained under inflammatory conditions. Moreover, loading DCs with Sia-antigens not only inhibited the function of in vitro–established Th1 and Th17 effector T cells but also significantly dampened ex vivo myelin-reactive T cells, present in the circulation of mice with experimental autoimmune encephalomyelitis. These data indicate that sialic acid-modified antigens instruct DCs in an antigen-specific tolerogenic programming, enhancing Treg cells and reducing the generation and propagation of inflammatory T cells. Our data suggest that sialylation of antigens provides an attractive way to induce antigen-specific immune tolerance
Blockade of IDO inhibits nasal tolerance induction
The amino acid tryptophan is essential for the proliferation and survival of cells. Modulation of tryptophan metabolism has been described as an important regulatory mechanism for the control of immune responses. The enzyme IDO degrades the indole moiety of tryptophan, not only depleting tryptophan but also producing immunomodulatory metabolites called kynurenines, which have apoptosis-inducing capabilities. In this study, we show that IDO is more highly expressed in nonplasmacytoid dendritic cells of the nose draining lymph nodes (LNs), which form a unique environment to induce tolerance to inhaled Ags, when compared with other peripheral LNs. Upon blockade of IDO during intranasal OVA administration, Ag-specific immune tolerance was abrogated. Analysis of Ag-specific T cells in the LNs revealed that inhibition of IDO resulted in enhanced survival at 48 h after antigenic stimulation, although this result was not mediated through alterations in apoptosis or cell proliferation. Furthermore, no differences were found in CD4(+) T cells expressing FoxP3. Our data suggest that the level of IDO expression in dendritic cells, present in nose draining LNs, allows for the generation of a sufficient number of regulatory T cells to control and balance effector T cells in such a way that immune tolerance is induced, whereas upon IDO blockade, effector T cells will outnumber regulatory T cells, leading to immunity