14 research outputs found

    Regulation of protein synthesis in lymphoblasts from vanishing white matter patients

    No full text
    Leukoencephalopathy with vanishing white matter (VWM) is an inherited childhood white matter disorder, caused by mutations in the genes encoding eukaryotic initiation factor 2B (eIF2B). The present study showed that, while the eIF2B activity was reduced in VWM lymphoblasts, the expression levels of the eIF2B subunits were similar to control lymphoblast lines. The mutations in eIF2B did not affect the interaction with eIF2. Strikingly, no apparent differences for the regulation of protein synthesis, measured by [35S]-methionine incorporation, were found between control and VWM lymphoblasts. Western blotting showed that, in some VWM cells, exposure to heat shock caused a decrease in the expression of specific eIF2B subunits. Most importantly, the increase in phosphorylation of eIF2? in response to heat shock was lower in VWM lymphoblasts than in control cells. These findings could form part of the explanation for the episodes of rapid and severe deterioration in VWM patients that are precipitated by febrile infections

    Adult mouse eIF2Bϵ Arg191His astrocytes display a normal integrated stress response in vitro

    No full text
    Vanishing white matter (VWM) is a genetic childhood white matter disorder, characterized by chronic as well as episodic, stress provoked, neurological deterioration. Treatment is unavailable and patients often die within a few years after onset. VWM is caused by recessive mutations in the eukaryotic initiation factor 2B (eIF2B). eIF2B regulates protein synthesis rates in every cell of the body. In normal cells, various types of cellular stress inhibit eIF2B activity and induce the integrated stress response (ISR). We have developed a VWM mouse model homozygous for the pathogenic Arg191His mutation in eIF2Bϵ (2b5 ho ), representative of the human disease. Neuropathological examination of VWM patient and mouse brain tissue suggests that astrocytes are primarily affected. We hypothesized that VWM astrocytes are selectively hypersensitive to ISR induction, resulting in a heightened response. We cultured astrocytes from wildtype and VWM mice and investigated the ISR in assays that measure transcriptional induction of stress genes, protein synthesis rates and cell viability. We investigated the effects of short- A nd long-term stress as well as stress recovery. We detected congruent results amongst the various assays and did not detect a hyperactive ISR in VWM mouse astrocytes.</p

    Severity of vanishing white matter disease does not correlate with deficits in eIF2B activity or the integrity of eIF2B complexes

    No full text
    Autosomal recessive mutations in eukaryotic initiation factor 2B (eIF2B) cause leukoencephalopathy vanishing white matter with a wide clinical spectrum. eIF2B comprises five subunits (?-?; genes EIF2B1, 2, 3, 4 and 5) and is the guanine nucleotide-exchange factor (GEF) for eIF2. It plays a key role in protein synthesis. Here, we have studied the functional effects of selected VWM mutations in EIF2B2-5 by co-expressing mutated and wildtype subunits in human cells. The observed functional effects are very diverse, including defects in eIF2B complex integrity; binding to the regulatory ?-subunit; substrate binding; and GEF activity. Activity data for recombinant eIF2B complexes agree closely with those for patient-derived cells with the same mutations. Some mutations do not affect these parameters even though they cause severe disease. These findings are important for three reasons; they demonstrate that measuring eIF2B activity in patients' cells has limited value as a diagnostic test; they imply that severe disease can result from alterations in eIF2B function other than defects in complex integrity, substrate binding or GEF activity and, lastly, the diversity of functional effects of VWM mutations implies that seeking agents to manage or treat VWM should focus on downstream effectors of eIF2B, not restoring eIF2B activity

    Spontaneous functional correction of homozygous Fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism

    No full text
    Somatic mosaicism due to reversion of a pathogenic allele to wild type has been described in several autosomal recessive disorders. The best known mechanism involves intragenic mitotic recombination or gene conversion in compound heterozygous patients, whereby one allele serves to restore the wild-type sequence in the other. Here we document for the first time functional correction of a pathogenic microdeletion, microinsertion and missense mutation in homozygous Fanconi anaemia (FA) patients resulting from compensatory secondary sequence alterations in cis. The frameshift mutation 1615delG in FANCA was compensated by two additional single base-pair deletions (1637delA and 1641deIT); another FANCA frameshift mutation, 3559insG, was compensated by 3580insCGCTG; and a missense mutation in FANCC (1749T→G, Leu496Arg) was altered by 1748C→T, creating a cysteine codon. Although in all three cases the predicted proteins were different from wild type, their cDNAs complemented the characteristic hypersensitivity of FA cells to crosslinking agents, thus establishing a functional correction to wild type

    Subunits of the translation initiation factor elF2B are mutant in leukoencephalopathy with vanishing white matter

    No full text
    Leukoencephalopathy with vanishing white matter (VWM) is an inherited brain disease that occurs mainly in children. The course is chronic-progressive with additional episodes of rapid deterioration following febrile infection or minor head trauma. We have identified mutations in ElF2B5 and ElF2B2, encoding the ε- and β-subunits of the translation initiation factor elF2B and located on chromosomes 3q27 and 14q24, respectively, as causing VWM. We found 16 different mutations in ElF2B5 in 29 patients from 23 families. We also found two distantly related individuals who were homozygous with respect to a missense mutation in ElF2B2, affecting a conserved amino acid. Three other patients also had mutations in ElF2B2. As elF2B has an essential role in the regulation of translation under different conditions, including stress, this may explain the rapid deterioration of people with VWM under stress. Mutant translation initiation factors have not previously been implicated in disease

    Evidence for at least eight Fanconi anemia genes.

    Get PDF
    Fanconi anemia (FA) is an autosomal recessive chromosomal breakage disorder with diverse clinical symptoms including progressive bone marrow failure and increased cancer risk. FA cells are hypersensitive to crosslinking agents, which has been exploited to assess genetic heterogeneity through complementation analysis. Five complementation groups (FA-A through FA-E) have so far been distinguished among the first 20 FA patients analyzed. Complementation groups in FA are likely to represent distinct disease genes, two of which (FAC and FAA) have been cloned. Following the identification of the first FA-E patient, additional patients were identified whose cell lines complemented groups A-D. To assess their possible assignment to the E group, we introduced selection markers into the original FA-E cell line and analyzed fusion hybrids with three cell lines classified as non-ABCD. All hybrids were complemented for cross-linker sensitivity, indicating nonidentity with group E. We then marked the three non-ABCDE cell lines and examined all possible hybrid combinations for complementation, which indicated that each individual cell line represented a separate complementation group. These results thus define three new groups, FA-F, FA-G, and FA-H, providing evidence for a minimum of eight distinct FA genes

    Leukoencephalopathy with thalamus and brainstem involvement and high lactate 'LTBL' caused by EARS2 mutations

    No full text
    In the large group of genetically undetermined infantile-onset mitochondrial encephalopathies, multiple defects of mitochondrial DNA-related respiratory-chain complexes constitute a frequent biochemical signature. In order to identify responsible genes, we used exome-next-generation sequencing in a selected cohort of patients with this biochemical signature. In an isolated patient, we found two mutant alleles for EARS2, the gene encoding mitochondrial glutamyl-tRNA synthetase. The brain magnetic resonance imaging of this patient was hallmarked by extensive symmetrical cerebral white matter abnormalities sparing the periventricular rim and symmetrical signal abnormalities of the thalami, midbrain, pons, medulla oblongata and cerebellar white matter. Proton magnetic resonance spectroscopy showed increased lactate. We matched this magnetic resonance imaging pattern with that of a cohort of 11 previously selected unrelated cases. We found mutations in the EARS2 gene in all. Subsequent detailed clinical and magnetic resonance imaging based phenotyping revealed two distinct groups: mild and severe. All 12 patients shared an infantile onset and rapidly progressive disease with severe magnetic resonance imaging abnormalities and increased lactate in body fluids and proton magnetic resonance spectroscopy. Patients in the 'mild' group partially recovered and regained milestones in the following years with striking magnetic resonance imaging improvement and declining lactate levels, whereas those of the 'severe' group were characterized by clinical stagnation, brain atrophy on magnetic resonance imaging and persistent lactate increases. This new neurological disease, early-onset leukoencephalopathy with thalamus and brainstem involvement and high lactate, is hallmarked by unique magnetic resonance imaging features, defined by a peculiar biphasic clinical course and caused by mutations in a single gene, EARS2, expanding the list of medically relevant defects of mitochondrial DNA translation. © 2012 The Author
    corecore