3 research outputs found

    West Nile Virus lineage 1 in Italy: newly introduced or a re-occurrence of a previously circulating strain?

    Get PDF
    In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008–2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory activ

    Detection and Genetic Characterization of Canine Adenoviruses, Circoviruses, and Novel Cycloviruses From Wild Carnivores in Italy

    Get PDF
    : Wild carnivores are known to play a role in the epidemiology of several canine viruses, including canine adenoviruses types 1 (CAdV-1) and 2 (CAdV-2), canine circovirus (CanineCV) and canine distemper virus (CDV). In the present study, we report an epidemiological survey for these viruses in free ranging carnivores from Italy. A total of 262 wild carnivores, including red foxes (Vulpes vulpes), wolves (Canis lupus) and Eurasian badgers (Meles meles) were sampled. Viral nucleic acid was extracted and screened by real-time PCR assays (qPCR) for the presence of CAdVs and CanineCV DNA, as well as for CDV RNA. CAdV-1 DNA was detected only in red foxes (4/232, 1.7%) whilst the wolves (0/8, 0%) and Eurasian badgers (0/22, 0%) tested negative. CanineCV DNA was detected in 4 (18%) Eurasian badgers, 4 (50%) wolves and 0 (0%) red foxes. None of the animals tested positive for CDV or CAdV-2. By sequence and phylogenetic analyses, CAdV-1 and CanineCV sequences from wild carnivores were closely related to reference sequences from domestic dogs and wild carnivores. Surprisingly, two sequences from wolf intestines were identified as cycloviruses with one sequence (145.20-5432) displaying 68.6% nucleotide identity to a cyclovirus detected in a domestic cat, while the other (145.201329) was more closely related (79.4% nucleotide identity) to a cyclovirus sequence from bats. A continuous surveillance in wild carnivores should be carried out in order to monitor the circulation in wildlife of viruses pathogenic for domestic carnivores and endangered wild species

    Epidemiology, pathological aspects and genome heterogeneity of feline morbillivirus in Italy

    No full text
    Feline morbillivirus (FeMV) is an emerging morbillivirus first described in cats less than a decade ago. FeMV has been associated with chronic kidney disease of cats characterized by tubulointerstitial nephritis (TIN), although this aspect is still controversial and not demonstrated with certainty. To investigate FeMV prevalence and genomic characteristics, an epidemiological survey was conducted in a total number of 127 household cats originating from two Italian regions, Abruzzi and Emilia-Romagna. A total number of 69 cats originating from three feline colonies were also enrolled for the study. Correlation with TIN was investigated by employing a total number of 35 carcasses. Prevalence of FeMV RNA was higher in urine samples collected from cats of colonies (P=31.8%, CI 95% 22.1–43.6) compared to household cats (P=8.66%, CI 95% 4.9–14.9) and in young and middle-aged cats while prevalence of FeMV Abs was higher in old cats. Sequences obtained straight from infected biological samples, either partial or complete, cluster into two clades within FeMV genotype 1, distantly related to FeMV genotype 2. Immunohistochemistry analysis of kidney sections of FeMV RNA positive cats revealed immunoreactivity within epithelial cells of renal tubuli and inflammatory cells. However, statistically significant association between FeMV and renal damages, including TIN, was not demonstrated (p= 0.0695, Fisher exact test). By virus histochemistry performed with FeMV-negative feline tissues and a FeMV isolate, tropism for different cellular types such as inflammatory cells residing in blood vessels of kidney and brain, airway epithelial cells, alveolar macrophages and to a lesser extent, the central nervous system, was demonstrated. Additional studies are warranted in order to establish viral tropism and immune response during the early phases of infection and to disentangle the role of FeMV in co-infection processes
    corecore