3 research outputs found

    Validity and Reliability of a Commercial Force Sensor for the Measurement of Upper Body Strength in Sport Climbing

    Get PDF
    Labott BK, Held S, Wiedenmann T, Rappelt L, Wicker P, Donath L. Validity and Reliability of a Commercial Force Sensor for the Measurement of Upper Body Strength in Sport Climbing. Frontiers in Sports and Active Living. Accepted

    Good Scientific Practice and Ethics in Sports and Exercise Science: A Brief and Comprehensive Hands-on Appraisal for Sports Research

    No full text
    Sports and exercise training research is constantly evolving to maintain, improve, or regain psychophysical, social, and emotional performance. Exercise training research requires a balance between the benefits and the potential risks. There is an inherent risk of scientific misconduct and adverse events in most sports; however, there is a need to minimize it. We aim to provide a comprehensive overview of the clinical and ethical challenges in sports and exercise research. We also enlist solutions to improve method design in clinical trials and provide checklists to minimize the chances of scientific misconduct. At the outset, historical milestones of exercise science literature are summarized. It is followed by details about the currently available regulations that help to reduce the risk of violating good scientific practices. We also outline the unique characteristics of sports-related research with a narrative of the major differences between sports and drug-based trials. An emphasis is then placed on the importance of well-designed studies to improve the interpretability of results and generalizability of the findings. This review finally suggests that sports researchers should comply with the available guidelines to improve the planning and conduct of future research thereby reducing the risk of harm to research participants. The authors suggest creating an oath to prevent malpractice, thereby improving the knowledge standards in sports research. This will also aid in deriving more meaningful implications for future research based on high-quality, ethically sound evidence

    A Link between Handgrip Strength and Executive Functioning: A Cross-Sectional Study in Older Adults with Mild Cognitive Impairment and Healthy Controls

    No full text
    Older adults with amnestic mild cognitive impairment (aMCI) who in addition to their memory deficits also suffer from frontal-executive dysfunctions have a higher risk of developing dementia later in their lives than older adults with aMCI without executive deficits and older adults with non-amnestic MCI (naMCI). Handgrip strength (HGS) is also correlated with the risk of cognitive decline in the elderly. Hence, the current study aimed to investigate the associations between HGS and executive functioning in individuals with aMCI, naMCI and healthy controls. Older, right-handed adults with amnestic MCI (aMCI), non-amnestic MCI (naMCI), and healthy controls (HC) conducted a handgrip strength measurement via a handheld dynamometer. Executive functions were assessed with the Trail Making Test (TMT A&B). Normalized handgrip strength (nHGS, normalized to Body Mass Index (BMI)) was calculated and its associations with executive functions (operationalized through z-scores of TMT B/A ratio) were investigated through partial correlation analyses (i.e., accounting for age, sex, and severity of depressive symptoms). A positive and low-to-moderate correlation between right nHGS (rp (22) = 0.364; p = 0.063) and left nHGS (rp (22) = 0.420; p = 0.037) and executive functioning in older adults with aMCI but not in naMCI or HC was observed. Our results suggest that higher levels of nHGS are linked to better executive functioning in aMCI but not naMCI and HC. This relationship is perhaps driven by alterations in the integrity of the hippocampal-prefrontal network occurring in older adults with aMCI. Further research is needed to provide empirical evidence for this assumption
    corecore