17 research outputs found

    Nyctocalos tunjuharii (Bignoniaceae), a new species from Sabah, Malaysian Borneo

    Get PDF
    Nyctocalos tunjuharii (Bignoniaceae) is described and illustrated as a new species from Mt Kallang, Tenom, Sabah, Malaysian Borneo. It is distinguished from N. cuspidatus by its longer, linear calyx teeth, shorter corolla tube and included stamens that reach less than half the length of the upper dilated part of the corolla tube. This species is restricted to an area near Mt Kallang, Tenom, Sabah. A preliminary conservation status assessment is presented and a key to the Malesian taxa is provided

    Two new species of Tristaniopsis (Myrtaceae) from Sabah

    Get PDF
    Two new species of Tristaniopsis (Myrtaceae) are described for Sabah: Tristaniopsis musa-amanii Berhaman & Peter G.Wilson and T. sam-mannanii Berhaman & Peter G.Wilson. Both species occur on ultramafic substrates

    Comparative vessel traits of Macaranga gigantea and Vatica dulitensis from Malaysian Borneo

    Get PDF
    Trade-offs in wood anatomical characteristics reflect different strategies used by trees to deal with water transport in response to variation in environmental conditions. To study vascular strategies for Bornean rainforest trees, we compared water transport-related anatomical characteristics in branch wood between the common tree species Vatica dulitensis (Dipterocarpaceae) from old-growth forest and the common pioneer tree species Macaranga gigantea (Euphorbiaceae) from selectively logged forest. We hypothesised that the vessel traits of the pioneer species would reflect the need to capture and transport resources to support its fast growth rate (resource-acquisitive strategy), while the species of the old-growth forest would display more conservative vessel traits (resource-conservative strategy). We found that M. gigantea had significantly greater vessel area, hydraulically weighted diameter, vessel area to number ratio, and potential hydraulic conductivity than V. dulitensis. These results suggest that vessel traits of the common old-growth species would ensure high hydraulic safety during occasional drought when soil moisture is limited, while the common species of selectively logged forest possesses an efficient water transport system but its vessels would confer lower hydraulic safety during drought conditions. These contrasting vascular strategies highlight the potential for divergent responses of species of Bornean forest trees to future climatic extremes

    Variations of leaf and stem traits in relation to altitudinal distributions of 12 Fagaceae species of Mount Kinabalu, Borneo

    Get PDF
    Fagaceae in Southeast Asia shows diverse distributions along altitude, but the underlying mechanisms remain unclear. Since species traits (morphological and physiological characteristics) can dictate their resource use strategies (e.g., the way of resource acquisition and allocation), they potentially influence their distributions along altitude. Here, to examine the linkage between species traits and altitude, we quantified the variation of 10 leaf and stem traits of 12 Fagaceae species growing in Mount Kinabalu, Borneo and related traits to species lowest and highest limits and altitudinal range. Species with high leaf dry mass per area (LMA) and lamina thickness showed higher upper limits of altitudinal distribution whereas no traits were correlated with the lower limits. LMA, lamina thickness, leaf carbon concentration, and nitrogen content positively covaried with species’ altitudinal range. These results demonstrate that species with conservative resource use had higher altitudinal limits and wider altitudinal range, highlighting the role of leaf traits in the diversification of altitudinal distributions among closely related species. We further suggest that diversifications in leaf traits potentially lead to the coexistence of Fagaceae species in tropical montane forests

    Liana abundance, diversitty and tree infestation in the Imbak Canyon conservation Area, Sabah, malaysia

    Get PDF
    We investigated the liana diversity and liana–tree relationship in lowland dipterocarp forest at Imbak Canyon, a recently designated conservation area in the heart of Sabah, Malaysia and compared the results with similar studies in the region. In the two 0.1-ha plots, a total of 23 liana species were found growing canopy-ward on trees ≥ 10 cm diameter at breast height (dbh); dipterocarps were less infested by lianas than non-dipterocarps. The liana species belonged to 12 families and 16 genera. Fabaceae followed by Annonaceae and Icacinaceae were the most abundant and species-rich families. The floristic pattern and the stem density of lianas > 1 cm dbh were similar to other studies conducted in Sabah and northern Sarawak at comparable elevation and site conditions but were distinct from other sites in tropical Asia where Annonaceae is the prevalent climber family. The dominance of species of the genus Spatholobus (Fabaceae) may be a conspicuous feature of lowland dipterocarp forests in Sabah under mesotrophic conditions

    Estimation of above-ground biomass of a tropical forest in Northern Borneo using high-resolution satellite image

    Get PDF
    Estimating above-ground biomass is important in establishing an applicable methodology of Measurement, Reporting and Verification (MRV) System for Reducing Emissions from Deforestation and Forest Degradation-Plus (REDD+). We developed an estimation model of diameter at breast height (DBH) from IKONOS-2 image that led to above-ground biomass estimation (AGB). The IKONOS image was preprocessed with dark object subtraction and topographic effect correction prior to watershed segmentation for tree crown delineation. Compared to the field observation, the overall segmentation accuracy was 64%. Crown detection percent had a strong negative correlation to tree density. In addition, satellite-based crown area had the highest correlation with the field measured DBH. We then developed the DBH allometric model that explained 74% of the data variance. In average, the estimated DBH was very similar to the measured DBH as well as for AGB. Overall, this method can potentially be applied to estimate AGB over a relatively large and remote tropical forest in Northern Borneo

    Syzygium (Myrtaceae): Monographing a taxonomic giant via 22 coordinated regional revisions

    Get PDF
    Syzygium Gaertn. is the largest woody genus of flowering plants in the world. Unpublished but extensive recent herbarium surveys suggest 1200‒1800 species distributed throughout the Old-World tropics and subtropics (Table 1). Until recently, Syzygium exemplified a recurring taxonomic impediment among megadiverse genera, wherein few taxonomists worked on the group in any sustained manner, a majority of the herbarium specimens remained undetermined or misidentified, few if any attempts were made to look at the genus globally and limited or no molecular studies were available to provide a predictive phylogenetic context of the genus. The situation with Syzygium has slowly begun to change as allied genera have been absorbed into the genus (Biffin et al., 2006; Craven & Biffin, 2010), and predictive phylogenetically based infrageneric classifications are emerging. Taxonomic outputs on Syzygium also have been increasing across its range with the description of new species, resolution of nomenclatural and typification issues, and some regional revisions being initiated or updated. However, virtually all regional treatments (which some areas lack) need urgent revision because they are severely outdated, have limited molecular sampling and are error-ridden. We are coordinating a genus-wide taxonomic update of Syzygium through a series of 22 regional revisions, including 9 in the Flora Malesiana region (Figure 1). Each treatment will include a phylogenetic framework with species descriptions, type information, synonymy, distributions, ecological notes, and keys. Field images (Figure 2) and/or line drawings will be included with the goal of every species being illustrated. This working group has been formed to encourage a coordinated effort to document this unwieldy taxonomic giant and regional botanists working on the group are encouraged to be involved. A robust taxonomy of the genus is a prerequisite for testing the many complex questions about evolution and ecology that Syzygium could help address

    Genomic insights into rapid speciation within the world’s largest tree genus Syzygium

    Get PDF
    Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification

    Genomic insights into rapid speciation within the world's largest tree genus Syzygium

    Get PDF
    Acknowledgements Y.W.L. was supported by a postgraduate scholarship research grant from the Ministry of National Development, Singapore awarded through the National Parks Board, Singapore (NParks; NParks’ Garden City Fund). Principal research funding from NParks and the School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, is acknowledged. We thank Peter Preiser, Associate Vice President for Biomedical and Life Sciences, for facilitating NTU support, and Kenneth Er, CEO of NParks, for facilitating research funding through that organisation. V.A.A. and C.L. were funded by SBS, NTU for a one-year research leave. V.A.A. and C.L. also acknowledge support from the United States National Science Foundation (grants 2030871 and 1854550, respectively). S.R. was supported by a postdoctoral research fellowship under the NTU Strategic Plant Programme. S.R. and N.R.W.C. acknowledge funding from NTU start-up and the Academy of Finland (decisions 318288, 319947) grants to J.S. Fieldwork conducted by Y.W.L. was supported by an Indonesian Government RISTEK research permit (Application ID: 1517217008) and an Access License from the Sabah State government [JKM/MBS.1000-2/2JLD.7(84)]. T.N.C.V. is grateful to the Assemblée de la Province Nord and Assemblée de la Province Sud (New Caledonia) for facilitating relevant collection permits. A.N. was partly supported by the Research Project Promotion Grant (Strategic Research Grant No. 17SP01302) from the University of the Ryukyus, and partly by the Environment Research and Technology Development Fund (JPMEERF20204003) from the Environmental Restoration and Conservation Agency of Japan. Fieldwork in Fiji conducted by R.B. was hosted and facilitated by Elina Nabubuniyaka-Young (The Pacific Community’s Centre for Pacific Crops and Trees, Fiji). We thank the NTU-Smithsonian Partnership for tree data obtained for the Bukit Timah Nature Reserve (BTNR) long-term forest dynamics plots. Administrative support provided by Mui Hwang Khoo-Woon and Peter Ang at the molecular laboratory of the Singapore Botanic Gardens (SBG) is acknowledged. Rosie Woods and Imalka Kahandawala (DNA and Tissue Bank, Royal Botanic Gardens, Kew) facilitated additional DNA samples. Daniel Thomas (SBG) and Yan Yu (Sichuan University) commented on biogeographical analyses. NovogeneAIT in Singapore is acknowledged for personalised sequencing service.Peer reviewedPublisher PD

    Genomic insights into rapid speciation within the world's largest tree genus Syzygium

    Get PDF
    The relative importance of the mechanisms underlying species radiation remains unclear. Here, the authors combine reference genome assembly and population genetics analyses to show that neutral forces have contributed to the radiation of the most species-rich tree genus Syzygium. Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.Peer reviewe
    corecore