87 research outputs found
Modelling and simulation of the chondrocyte cell growth, glucose consumption and lactate production within a porous tissue scaffold inside a perfusion bioreactor
AbstractMathematical and numerical modelling of the tissue culture process in a perfusion bioreactor is able to provide insight into the fluid flow, nutrients and wastes transport, dynamics of the pH value, and the cell growth rate. Knowing the complicated interdependence of these processes is essential for optimizing the culture process for cell growth. This paper presents a resolved scale numerical simulation, which allows one not only to characterize the supply of glucose inside a porous tissue scaffold in a perfusion bioreactor, but also to assess the overall culture condition and predict the cell growth rate. The simulation uses a simplified scaffold that consists of a repeatable unit composed of multiple strands. The simulation results explore some problematic regions inside the simplified scaffold where the concentration of glucose becomes lower than the critical value for the chondrocyte cell viability and the cell growth rate becomes significantly reduced
The Hemodynamics of Aneurysms Treated with Flow-Diverting Stents Considering both Stent and Aneurysm/Artery Geometries
Flow diverting stents are deployed to reduce the blood flow into the aneurysm, which would thereby induce thrombosis in the aneurysm sac; the stents prevent its rupture. The present study aimed to examine and quantify the impacts of different flow stents on idealized configurations of the cerebral artery. In our study, we considered a spherical sidewall aneurysm located on curved and tortuous idealized artery vessels and three stents with different porosities (70, 80 and 90%) for deployment. Using computational fluid dynamics, the local hemodynamics in the presence and absence of the stents were simulated, respectively, under the assumption that the blood flow was unsteady and non-Newtonian. The hemodynamic parameters, such as the intra-aneurysmal flow, velocity field and wall shear stress and its related indices, were examined and compared among the 12 cases simulated. The results illustrated that with the stent deployment, the intra-aneurysmal flow and the wall shear stress and its related indices were considerably modified depending on both stent and aneurysm/artery geometries, and that the intra-aneurysmal relative residence time increased rapidly with decreasing stent porosity in all the vessel configurations. These results also inform the rationale for selecting stents for treating aneurysms of different configurations
Variable-Speed-of-Light Cosmology from Brane World Scenario
We argue that the four-dimensional universe on the TeV brane of the
Randall-Sundrum scenario takes the bimetric structure of Clayton and Moffat,
with gravitons traveling faster than photons instead, while the radion varies
with time. We show that such brane world bimetric model can thereby solve the
flatness and the cosmological constant problems, provided the speed of a
graviton decreases to the present day value rapidly enough. The resolution of
other cosmological problems such as the horizon problem and the monopole
problem requires supplementation by inflation, which may be achieved by the
radion field provided the radion potential satisfies the slow-roll
approximation.Comment: 18 pages, LaTeX, revised version to appear in Phys. Rev.
Review: The Newsletter of the Literary Managers and Dramaturgs of the Americas, volume 14, issue 1
Contents include: Far From Inundated, A Word form the President, BHAGS Words of Welcome, Remarks from Conference Co-Chair Ed Sobel, Keynote Speech Given by Chuck Smith Introduced by Michele Volansky, The Telephone Monologues: Five Monologues Written for the 2003 LMDA Conference introduced by Janet Allard, Telephone, Billy, The Visitors, A Drag Queen, Choice, Don\u27t Know Much About Holly-turgy Outline, Reflections on Conference 2003, Elect Better Actors, Neo-Romantic Manifesto, Pullet Surprise-Call for Nominations, and Regional News-Know Your Regional Vice Presidents.
Issue editors: D.J. Hopkins, Shelley Orr, Liz Engelman, Madeleine Oldham, Jacob Zimmerhttps://soundideas.pugetsound.edu/lmdareview/1028/thumbnail.jp
Primeval Corrections to the CMB Anisotropies
We show that deviations of the quantum state of the inflaton from the thermal
vacuum of inflation may leave an imprint in the CMB anisotropies. The quantum
dynamics of the inflaton in such a state produces corrections to the
inflationary fluctuations, which may be observable. Because these effects
originate from IR physics below the Planck scale, they will dominate over any
trans-Planckian imprints in any theory which obeys decoupling. Inflation sweeps
away these initial deviations and forces its quantum state closer to the
thermal vacuum. We view this as the quantum version of the cosmic no-hair
theorem. Such imprints in the CMB may be a useful, independent test of the
duration of inflation, or of significant features in the inflaton potential
about 60 e-folds before inflation ended, instead of an unlikely discovery of
the signatures of quantum gravity. The absence of any such substructure would
suggest that inflation lasted uninterrupted much longer than
e-folds.Comment: 17 pages, latex, no figures; v3: added references and comments, final
version to appear in Phys. Rev.
Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter
In recent years, a number of experiments have been conducted with the goal of
studying cosmic rays at GeV to TeV energies. This is a particularly interesting
regime from the perspective of indirect dark matter detection. To draw reliable
conclusions regarding dark matter from cosmic ray measurements, however, it is
important to first understand the propagation of cosmic rays through the
magnetic and radiation fields of the Milky Way. In this paper, we constrain the
characteristics of the cosmic ray propagation model through comparison with
observational inputs, including recent data from the CREAM experiment, and use
these constraints to estimate the corresponding uncertainties in the spectrum
of cosmic ray electrons and positrons from dark matter particles annihilating
in the halo of the Milky Way.Comment: 21 pages, 9 figure
The Leptonic Higgs as a Messenger of Dark Matter
We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC
result from the annihilation or decay of dark matter particles via states of a
leptonic Higgs doublet to leptons, linking cosmic ray signals of dark
matter to LHC signals of the Higgs sector. The states of the leptonic Higgs
doublet are lighter than about 200 GeV, yielding large and
event rates at the LHC. Simple models are
given for the dark matter particle and its interactions with the leptonic
Higgs, for cosmic ray signals arising from both annihilations and decays in the
galactic halo. For the case of annihilations, cosmic photon and neutrino
signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde
Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha
We study the change of the effective fine structure constant in the
cosmological models of a scalar field with a non-vanishing coupling to the
electromagnetic field. Combining cosmological data and terrestrial observations
we place empirical constraints on the size of the possible coupling and explore
a large class of models that exhibit tracking behavior. The change of the fine
structure constant implied by the quasar absorption spectra together with the
requirement of tracking behavior impose a lower bound of the size of this
coupling. Furthermore, the transition to the quintessence regime implies a
narrow window for this coupling around in units of the inverse Planck
mass. We also propose a non-minimal coupling between electromagnetism and
quintessence which has the effect of leading only to changes of alpha
determined from atomic physics phenomena, but leaving no observable
consequences through nuclear physics effects. In doing so we are able to
reconcile the claimed cosmological evidence for a changing fine structure
constant with the tight constraints emerging from the Oklo natural nuclear
reactor.Comment: 13 pages, 10 figures, RevTex, new references adde
The position of graptolites within Lower Palaeozoic planktic ecosystems.
An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms
Cosmic Microwave Background constraint on residual annihilations of relic particles
Energy injected into the Cosmic Microwave Background at redshifts z<10^6 will
distort its spectrum permanently. In this paper we discuss the distortion
caused by annihilations of relic particles. We use the observational bounds on
deviations from a Planck spectrum to constrain a combination of annihilation
cross section, mass, and abundance. For particles with (s-wave) annihilation
cross section, =\sigma_0, the bound is
f[(\sigma_0/6e-27cm^3/s)(\Omega_{X\bar{X}}h^2)^2]/(m_X/MeV)<0.2, where m_X is
the particle mass, \Omega_{X\bar{X}} is the fraction of the critical density
the particle and its antiparticle contribute if they survive to the present
time, h=H_0/(100km/s/Mpc), H_0 is the Hubble constant, and f is the fraction of
the annihilation energy that interacts electromagnetically. We also compute the
less stringent limits for p-wave annihilation. We update other bounds on
residual annihilations and compare them to our CMB bound.Comment: submitted to Phys. Rev.
- …