9 research outputs found

    Opportunities and challenges for antisense oligonucleotide therapies

    Get PDF
    Antisense oligonucleotide (AON) therapies involve short strands of modified nucleotides that target RNA in a sequence-specific manner, inducing targeted protein knockdown or restoration. Currently, 10 AON therapies have been approved in the United States and Europe. Nucleotides are chemically modified to protect AONs from degradation, enhance bioavailability and increase

    Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease

    Get PDF
    The most common variant causing Pompe disease is c.-32-13T>G (IVS1) in the acid α-glucosidase (GAA) gene, which weakens the splice acceptor of GAA exon 2 and induces partial and complete exon 2 skipping. It also allows a low level of leaky wild-type splicing, leading to a childhood/adult phenotype. We hypothesized that cis-acting splicing motifs may exist that could be blocked using antisense oligonucleotides (AONs) to promote exon inclusion. To test this, a screen was performed in patient-derived primary fibroblasts using a tiling array of U7 small nuclear RNA (snRNA)-based AONs. This resulted in the identification of a splicing regulatory element in GAA intron 1. We designed phosphorodiamidate morpholino oligomer-based AONs to this element, and these promoted exon 2 inclusion and enhanced GAA enzyme activity to levels above the disease threshold. These results indicate that the common IVS1 GAA splicing variant in Pompe disease is subject to negative regulation, and inhibition of a splicing regulatory element using AONs is able to restore canonical GAA splicing and endogenous GAA enzyme activity

    From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: A Pipeline for the Development of Antisense Oligonucleotides

    Get PDF
    While 9% of human pathogenic variants have an established effect on pre-mRNA splicing, it is suspected that an additional 20% of otherwise classified variants also affect splicing. Aberrant splicing includes disruption of splice sites or regulatory elements, or creation or strengthening of cryptic splice sites. For the majority of variants, it is poorly understood to what extent and how these may affect splicing. We have identified cryptic splicing in an unbiased manner. Three types of cryptic splicing were analyzed in the context of pathogenic variants in the acid α-glucosidase gene causing Pompe disease. These involved newly formed deep intronic or exonic cryptic splice sites, and a natural cryptic splice that was utilized due to weakening of a canonical splice site. Antisense oligonucleotides that targeted the identified cryptic splice sites repressed cryptic splicing at the expense of canonical splicing in all three cases, as shown by reverse-transcriptase-quantitative polymerase chain reaction analysis and by enhancement of acid α-glucosidase enzymatic activity. This argues for a competition model for available splice sites, including intact or weakened canonical sites and natural or newly formed cryptic sites. The pipeline described here can detect cryptic splicing and correct canonical splicing using antisense oligonucleotides to restore the gene defect

    GAA Deficiency in Pompe Disease Is Alleviated by Exon Inclusion in iPSC-Derived Skeletal Muscle Cells

    Get PDF
    Pompe disease is a metabolic myopathy caused by deficiency of the acid α-glucosidase (GAA) enzyme and results in progressive wasting of skeletal muscle cells. The c.-32-13T>G (IVS1) GAA variant promotes exon 2 skipping during pre-mRNA splicing and is the most common variant for the childhood/adult disease form. We previously identified antisense oligonucleotides (AONs) that promoted GAA exon 2 inclusion in patient-derived fibroblasts. It was unknown how these AONs would affect GAA splicing in skeletal muscle cells. To test this, we expanded induced pluripotent stem cell (iPSC)-derived myogenic progenitors and differentiated these to multinucleated myotubes. AONs restored splicing in myotubes to a similar extent as in fibroblasts, suggesting that they act by modulating the action of shared splicing regulators. AONs targeted the putative polypyrimidine tract of a cryptic splice acceptor site that was part of a pseudo exon in GAA intron 1. Blocking of the cryptic splice donor of the pseudo exon with AONs likewise promoted GAA exon 2 inclusion. The simultaneous blocking of the cryptic acceptor and cryptic donor sites restored the majority of canonical splicing and alleviated GAA enzyme deficiency. These results highlight the relevance of cryptic splicing in human disease and its potential as therapeutic target for splicing modulation using AONs

    Extension of the Pompe mutation database by linking disease-associated variants to clinical severity

    Get PDF
    Pompe disease is an autosomal recessive lysosomal storage disorder caused by disease‐associated variants in the acid alpha‐glucosidase (GAA) gene. The current Pompe mutation database provides a severity rating of GAA variants based on in silico predictions and expression studies. Here, we extended the database with clinical information of reported phenotypes. We added additional in silico predictions for effects on splicing and protein function and for cross reactive immunologic material (CRIM) status, minor allele frequencies, and molecular analyses. We analyzed 867 patients and 562 GAA variants. Based on their combination with a GAA null allele (i.e., complete deficiency of GAA enzyme activity), 49% of the 422 disease‐associated variants could be linked to classic infantile, childhood, or adult phenotypes. Predictions and immunoblot analyses identified 131 CRIM negative and 216 CRIM positive variants. While disease‐associated missense variants were found throughout the GAA protein, they were enriched up to seven‐fold in the catalytic site. Fifteen percent of disease‐associated missense variants were predicted to affect splicing. This should be confirmed using splicing assays. Inclusion of clinical severity rating in the Pompe mutation database provides an invaluable tool for diagnosis, prognosis of disease progression, treatment regimens, and the future development of personalized medicine for Pompe disease

    Update of the Pompe variant database for the prediction of clinical phenotypes: Novel disease-associated variants, common sequence variants, and results from newborn screening

    Get PDF
    Pompe disease is an inherited disorder caused by disease-associated variants in the acid α-glucosidase gene (GAA). The Pompe disease GAA variant database (http://www.pompevariantdatabase.nl) is a curated, open-source, disease-specific database, and lists disease-associated GAA variants, in silico predictions, and clinical phenotypes reported until 2016. Here, we provide an update to include 226 disease-associated variants that were published until 2020. We also listed 148 common GAA sequence variants that do not cause Pompe disease. GAA variants with unknown severity that were identified only in newborn screening programs were listed as a new feature to indicate the reason why phenotypes were still unknown. Expression studies were performed for common missense variants to predict their severity. The updated Pompe disease GAA variant database now includes 648 disease-associated variants, 26 variants from newborn screening, and 237 variants with unknown severity. Regular updates of the Pompe disease GAA variant database will be required to improve genetic counseling and the study of genotype–phenotype relationships

    Novel GAA Variants and Mosaicism in Pompe Disease Identified by Extended Analyses of Patients with an Incomplete DNA Diagnosis

    Get PDF
    Pompe disease is a metabolic disorder caused by a deficiency of the glycogen-hydrolyzing lysosomal enzyme acid α-glucosidase (GAA), which leads to progressive muscle wasting. This autosomal-recessive disorder is the result of disease-associated variants located in the GAA gene. In the present study, we performed extended molecular diagnostic analysis to identify novel disease-associated variants in six suspected Pompe patients from four different families for which conventional diagnostic assays were insufficient. Additional assays, such as a generic-splicing assay, minigene analysis, SNP array analysis, and targeted Sanger sequencing, allowed the identification of an exonic deletion, a promoter deletion, and a novel splicing variant located in the 5′ UTR. Furthermore, we describe the diagnostic process for an infantile patient with an atypical phenotype, consisting of left ventricular hypertrophy but no signs of muscle weakness or motor problems. This led to the identification of a genetic mosaicism for a very severe GAA variant caused by a segmental uniparental isodisomy (UPD). With this study, we aim to emphasize the need for additional analyses to detect new disease-associated GAA variants and non-Mendelian genotypes in Pompe disease where conventional DNA diagnostic assays are insufficient

    Broad variation in phenotypes for common GAA genotypes in Pompe disease

    No full text
    Patients with the common c.-32-13T > G/null GAA genotype have a broad variation in age at symptom onset, ranging from early childhood to late adulthood. Phenotypic variation for other common GAA genotypes remains l
    corecore