910 research outputs found
Sub-dekahertz ultraviolet spectroscopy of 199Hg+
Using a laser that is frequency-locked to a Fabry-Perot etalon of high
finesse and stability, we probe the 5d10 6s 2S_1/2 (F=0) - 5d9 6s 2D_5/2 (F=2)
Delta-m_F = 0 electric-quadrupole transition of a single laser-cooled 199Hg+
ion stored in a cryogenic radio-frequency ion trap. We observe
Fourier-transform limited linewidths as narrow as 6.7 Hz at 282 nm (1.06 X
10^15 Hz), yielding a line Q = 1.6 X 10^14. We perform a preliminary
measurement of the 5d9 6s2 2D_5/2 electric-quadrupole shift due to interaction
with the static fields of the trap, and discuss the implications for future
trapped-ion optical frequency standards.Comment: 4 pages, 4 figures, submitted for publicatio
Host Population Genetics and Biogeography Structure the Microbiome of the Sponge Cliona delitrix
Sponges occur across diverse marine biomes and host internal microbial communities that can provide critical ecological functions. While strong patterns of host specificity have been observed consistently in sponge microbiomes, the precise ecological relationships between hosts and their symbiotic microbial communities remain to be fully delineated. In the current study, we investigate the relative roles of host population genetics and biogeography in structuring the microbial communities hosted by the excavating sponge Cliona delitrix. A total of 53 samples, previously used to demarcate the population genetic structure of C. delitrix, were selected from two locations in the Caribbean Sea and from eight locations across the reefs of Florida and the Bahamas. Microbial community diversity and composition were measured using Illuminaâbased highâthroughput sequencing of the 16S rRNA V4 region and related to host population structure and geographic distribution. Most operational taxonomic units (OTUs) specific to Cliona delitrix microbiomes were rare, while other OTUs were shared with congeneric hosts. Across a large regional scale (\u3e1,000 km), geographic distance was associated with considerable variability of the sponge microbiome, suggesting a distanceâdecay relationship, but little impact over smaller spatial scales (\u3c300 km) was observed. Host population structure had a moderate effect on the structure of these microbial communities, regardless of geographic distance. These results support the interplay between geographic, environmental, and host factors as forces determining the community structure of microbiomes associated with C. delitrix. Moreover, these data suggest that the mechanisms of host regulation can be observed at the population genetic scale, prior to the onset of speciation
Quantum state manipulation of trapped atomic ions
A single laser-cooled and trapped 9Be+ ion is used to investigate methods of
coherent quantum-state synthesis and quantum logic. We create and characterize
nonclassical states of motion including "Schroedinger-cat" states. A
fundamental quantum logic gate is realized which uses two states of the
quantized ion motion and two ion internal states as qubits. We explore some of
the applications for, and problems in realizing, quantum computation based on
multiple trapped ions.Comment: Postscript only. 21 pages text, 5 figures., Proc. Workshop on Quantum
Computing, Santa Barbara, CA, Dec. 1996, Submitted to Proc. Roy. Soc.
Brown-York Energy and Radial Geodesics
We compare the Brown-York (BY) and the standard Misner-Sharp (MS) quasilocal
energies for round spheres in spherically symmetric space-times from the point
of view of radial geodesics. In particular, we show that the relation between
the BY and MS energies is precisely analogous to that between the
(relativistic) energy E of a geodesic and the effective (Newtonian) energy
E_{eff} appearing in the geodesic equation, thus shedding some light on the
relation between the two. Moreover, for Schwarzschild-like metrics we establish
a general relationship between the BY energy and the geodesic effective
potential which explains and generalises the recently observed connection
between negative BY energy and the repulsive behaviour of geodesics in the
Reissner-Nordstrom metric. We also comment on the extension of this connection
between geodesics and the quasilocal BY energy to regions inside a horizon.Comment: v3: 7 pages, shortened and revised version to appear in CQ
Conditional resonance-fluorescence spectra of single atoms.
Published versio
Tunneling Ionization Rates from Arbitrary Potential Wells
We present a practical numerical technique for calculating tunneling
ionization rates from arbitrary 1-D potential wells in the presence of a linear
external potential by determining the widths of the resonances in the spectral
density, rho(E), adiabatically connected to the field-free bound states. While
this technique applies to more general external potentials, we focus on the
ionization of electrons from atoms and molecules by DC electric fields, as this
has an important and immediate impact on the understanding of the multiphoton
ionization of molecules in strong laser fields.Comment: 13 pages, 7 figures, LaTe
Symmetric qubits from cavity states
Two-mode cavities can be prepared in quantum states which represent symmetric
multi-qubit states. However, the qubits are impossible to address individually
and as such cannot be independently measured or otherwise manipulated. We
propose two related schemes to coherently transfer the qubits which the cavity
state represents onto individual atoms, so that the qubits can then be
processed individually. In particular, our scheme can be combined with the
quantum cloning scheme of Simon and coworkers [C. Simon et al, PRL 84, 2993
(2000)] to allow the optimal clones which their scheme produces to be spatially
separated and individually utilized.Comment: 8 pages, 4 figures, minor typographical errors correcte
Quantum state engineering on an optical transition and decoherence in a Paul trap
A single Ca+ ion in a Paul trap has been cooled to the ground state of
vibration with up to 99.9% probability. Starting from this Fock state |n=0> we
have demonstrated coherent quantum state manipulation on an optical transition.
Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar
number of Rabi oscillations after preparation of the ion in the |n=1> Fock
state. The coherence of optical state manipulation is only limited by laser and
ambient magnetic field fluctuations. Motional heating has been measured to be
as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure
Quantum control, quantum information processing, and quantum-limited metrology with trapped ions
We briefly discuss recent experiments on quantum information processing using
trapped ions at NIST. A central theme of this work has been to increase our
capabilities in terms of quantum computing protocols, but we have also applied
the same concepts to improved metrology, particularly in the area of frequency
standards and atomic clocks. Such work may eventually shed light on more
fundamental issues, such as the quantum measurement problem.Comment: Proceedings of the International Conference on Laser Spectroscopy
(ICOLS), 10 pages, 5 figure
- âŠ