26 research outputs found

    Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoclonal free light chains (FLCs) frequently cause rapidly progressive renal failure in patients with multiple myeloma. Immunoassays which provide quantitative measurement of FLCs in serum, have now been adopted into screening algorithms for multiple myeloma and other lymphoproliferative disorders. The assays indicate monoclonal FLC production by the presence of an abnormal κ to λ FLC ratio (reference range 0.26–1.65). Previous work, however, has demonstrated that in patients with renal failure the FLC ratio can be increased above normal with no other evidence of monoclonal proteins suggesting that in this population the range should be extended (reference range 0.37–3.1). This study evaluated the diagnostic sensitivity and specificity of the immunoassays in patients with severe renal failure.</p> <p>Methods</p> <p>Sera from 142 patients with new dialysis-dependent renal failure were assessed by serum protein electrophoresis (SPE), FLC immunoassays and immunofixation electrophoresis. The sensitivity and specificity of the FLC ratio's published reference range was compared with the modified renal reference range for identifying patients with multiple myeloma; by receiver operating characteristic curve analysis.</p> <p>Results</p> <p>Forty one patients had a clinical diagnosis of multiple myeloma; all of these patients had abnormal serum FLC ratios. The modified FLC ratio range increased the specificity of the assays (from 93% to 99%), with no loss of sensitivity. Monoclonal FLCs were identified in the urine from 23 of 24 patients assessed.</p> <p>Conclusion</p> <p>Measurement of serum FLC concentrations and calculation of the serum κ/λ ratio is a convenient, sensitive and specific method for identifying monoclonal FLC production in patients with multiple myeloma and acute renal failure. Rapid diagnosis in these patients will allow early initiation of disease specific treatment, such as chemotherapy plus or minus therapies for direct removal of FLCs.</p

    Fastest Paths, Almost Disjoint Paths, and Beyond

    No full text
    This thesis is primarily motivated by a project with Deutsche Bahn about offer preparation in rail freight transport. At its core, a customer should be offered three train paths to choose from in response to a freight train request. As part of this cooperation with DB Netz AG, we investigated how to compute these train paths efficiently. They should be all "good" but also "as different as possible". We solved this practical problem using combinatorial optimization techniques. At the beginning of this thesis, we describe the practical aspects of our research collaboration. The more theoretical problems, which we consider afterwards, are divided into two parts. In Part I, we deal with a dual pair of problems on directed graphs with two designated end-vertices. The Almost Disjoint Paths (ADP) problem asks for a maximum number of paths between the end-vertices any two of which have at most one arc in common. In comparison, for the Separating by Forbidden Pairs (SFP) problem we have to select as few arc pairs as possible such that every path between the end-vertices contains both arcs of a chosen pair. The main results of this more theoretical part are the classifications of ADP as an NP-complete and SFP as a Sigma-2-P-complete problem. In Part II, we address a simplified version of the practical project: the Fastest Path with Time Profiles and Waiting (FPTPW) problem. In a directed acyclic graph with durations on the arcs and time windows at the vertices, we search for a fastest path from a source to a target vertex. We are only allowed to be at a vertex within its time windows, and we are only allowed to wait at specified vertices. After introducing departure-duration functions we develop solution algorithms based on these. We consider special cases that significantly reduce the complexity or are of practical relevance. Furthermore, we show that already this simplified problem is in general NP-hard and investigate the complexity status more closely

    Near-Native Visualization of SARS-CoV-2 Induced Membrane Remodeling and Virion Morphogenesis

    No full text
    Infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, leads to profound remodeling of cellular membranes, promoting viral replication and virion assembly. A full understanding of this drastic remodeling and the process of virion morphogenesis remains lacking. In this study, we applied room temperature transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) tomography to visualize the SARS-CoV-2 replication factory in Vero cells, and present our results in comparison with published cryo-EM studies. We obtained cryo-EM-like clarity of the ultrastructure by employing high-pressure freezing, freeze substitution (HPF-FS) and embedding, allowing room temperature visualization of double-membrane vesicles (DMVs) in a near-native state. In addition, our data illustrate the consecutive stages of virion morphogenesis and reveal that SARS-CoV-2 ribonucleoprotein assembly and membrane curvature occur simultaneously. Finally, we show the tethering of virions to the plasma membrane in 3D, and that accumulations of virus particles lacking spike protein in large vesicles are most likely not a result of defective virion assembly at their membrane. In conclusion, this study puts forward a room-temperature EM technique providing near-native ultrastructural information about SARS-CoV-2 replication, adding to our understanding of the interaction of this pandemic virus with its host cell

    Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes

    No full text
    Phagocytosis of apoptotic, senescent, and dying cells by macrophages is a well characterized process. More recently it has been shown that in addition to macrophages vital neighboring cells in the affected tissue participate in the cellular clearance. While scavenger receptors have been shown to mediate uptake into macrophages, it is poorly understood how cellular debris is internalized by nonprofessional phagocytes. We here analyze the endocytic activity of vital fibroblasts and epithelial cells exposed to cellular debris and membrane remnants. We show a mutual stimulation in the endocytosis of debris and apolipoproteinJ (clusterin) in these cells. Experiments using RAP (receptor-associated protein) to block ligand binding to LRP and megalin as wel

    Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure

    No full text
    Deg1 is a chloroplastic protease involved in maintaining the photosynthetic machinery. Structural and biochemical analyses reveal that the inactive Deg1 monomer is transformed into the proteolytically active hexamer at acidic pH. The change in pH is sensed by His244, which upon protonation, repositions a specific helix to trigger oligomerization. This system ensures selective activation of Deg1 during daylight, when acidification of the thylakoid lumen occurs and photosynthetic proteins are damaged
    corecore