13,182 research outputs found
The Conductance of a Perfect Thin Film with Diffuse Surface Scattering
The conductance of thin films with diffusive surface scattering was solved
semi-classically by Fuchs and Sondheimer. However, when the intrinsic electron
mean free path is very large or infinite their conductance diverges. In this
letter a simple diffraction picture is presented. It yields a conductance which
corresponds to a limiting mean free path. PACS: 73.50.-h, 73.50.Bk, 73.23.-b,
73.25.+i, B14
New design of electrostatic mirror actuators for application in high-precision interferometry
We describe a new geometry for electrostatic actuators to be used in sensitive laser interferometers, suited for prototype and table top experiments related to gravitational wave detection with mirrors of 100 g or less. The arrangement consists of two plates at the sides of the mirror (test mass), and therefore does not reduce its clear aperture as a conventional electrostatic drive (ESD) would do. Using the sample case of the AEI-10 m prototype interferometer, we investigate the actuation range and the influence of the relative misalignment of the ESD plates with respect to the test mass. We find that in the case of the AEI-10 m prototype interferometer, this new kind of ESD could provide a range of 0.28 ÎĽm when operated at a voltage of 1 kV. In addition, the geometry presented is shown to provide a reduction factor of about 100 in the magnitude of the actuator motion coupling to the test mass displacement. We show that therefore in the specific case of the AEI-10 m interferometer, it is possible to mount the ESD actuators directly on the optical table without spoiling the seismic isolation performance of the triple stage suspension of the main test masses
Coherent population transfer beyond the adiabatic limit: generalized matched pulses and higher-order trapping states
We show that the physical mechanism of population transfer in a 3-level
system with a closed loop of coherent couplings (loop-STIRAP) is not equivalent
to an adiabatic rotation of the dark-state of the Hamiltonian but coresponds to
a rotation of a higher-order trapping state in a generalized adiabatic basis.
The concept of generalized adiabatic basis sets is used as a constructive tool
to design pulse sequences for stimulated Raman adiabatic passage (STIRAP) which
give maximum population transfer also under conditions when the usual condition
of adiabaticty is only poorly fulfilled. Under certain conditions for the
pulses (generalized matched pulses) there exists a higher-order trapping state,
which is an exact constant of motion and analytic solutions for the atomic
dynamics can be derived.Comment: 15 pages, 9 figure
Photoionization Suppression by Continuum Coherence: Experiment and Theory
We present experimental and theoretical results of a detailed study of
laser-induced continuum structures (LICS) in the photoionization continuum of
helium out of the metastable state 2s . The continuum dressing with a
1064 nm laser, couples the same region of the continuum to the {4s }
state. The experimental data, presented for a range of intensities, show
pronounced ionization suppression (by as much as 70% with respect to the
far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance
profile. This ionization suppression is a clear indication of population
trapping mediated by coupling to a contiuum. We present experimental results
demonstrating the effect of pulse delay upon the LICS, and for the behavior of
LICS for both weak and strong probe pulses. Simulations based upon numerical
solution of the Schr\"{o}dinger equation model the experimental results. The
atomic parameters (Rabi frequencies and Stark shifts) are calculated using a
simple model-potential method for the computation of the needed wavefunctions.
The simulations of the LICS profiles are in excellent agreement with
experiment. We also present an analytic formulation of pulsed LICS. We show
that in the case of a probe pulse shorter than the dressing one the LICS
profile is the convolution of the power spectra of the probe pulse with the
usual Fano profile of stationary LICS. We discuss some consequences of
deviation from steady-state theory.Comment: 29 pages, 17 figures, accepted to PR
Complementarity relation for irreversible process derived from stochastic energetics
When the process of a system in contact with a heat bath is described by
classical Langevin equation, the method of stochastic energetics [K. Sekimoto,
J. Phys. Soc. Jpn. vol. 66 (1997) p.1234] enables to derive the form of
Helmholtz free energy and the dissipation function of the system. We prove that
the irreversible heat Q_irr and the time lapse $Delta t} of an isothermal
process obey the complementarity relation, Q_irr {Delta t} >= k_B T S_min,
where S_min depends on the initial and the final values of the control
parameters, but it does not depend on the pathway between these values.Comment: 3 pages. LaTeX with 6 style macro
Measuring a coherent superposition
We propose a simple method for measuring the populations and the relative
phase in a coherent superposition of two atomic states. The method is based on
coupling the two states to a third common (excited) state by means of two laser
pulses, and measuring the total fluorescence from the third state for several
choices of the excitation pulses.Comment: 7 pages, 1 figure, twocolumn REVTe
Radiation Protection Considerations for the Cryogenic In Vacuum Undulator of the EMIL Project at BESSY
The Helmholtz Zentrum Berlin and the Max Planck Society implement a new dedicated X ray beamline at the synchrotron light source BESSY II for the analysis of materials for the regenerative energy generation. The project is called EMIL, the Energy Materials In Situ Laboratory Berlin, [1] and the beamlines had to deliver x rays with a needed energy range from 80 eV up to 12000 eV. Therefore two undulators will be placed in a single straight section, for soft x rays an elliptical APPLE II device and for hard x rays a cryogenic in vacuum undulator. To determine adequate measures of the shielding of synchrotron radiation in the experimental hall we use the particle transport code FLUKA [2] [3]. We calculated the synchrotron radiation spectra for the cryogenic undulator with the code SPECTRA10 [4]. After modeling the modified section of the storage ring and the new beamlines we determined the thickness of the shielding walls of the hutches with the results of spectra sampling with FLUKA up to 30000 eV. The APPLE II undulator don t has to be considered for the hutch design because of its low energy synchrotron radiation 80 eV up to 2000 eV which is absorbed in the vacuum system. Additionally we considered the effects of the bremsstrahlung with FLUKA simulations
Longitudinal Atomic Beam Spin Echo Experiments: A possible way to study Parity Violation in Hydrogen
We discuss the propagation of hydrogen atoms in static electric and magnetic
fields in a longitudinal atomic beam spin echo (lABSE) apparatus. Depending on
the choice of the external fields the atoms may acquire both dynamical and
geometrical quantum mechanical phases. As an example of the former, we show
first in-beam spin rotation measurements on atomic hydrogen, which are in
excellent agreement with theory. Additional calculations of the behaviour of
the metastable 2S states of hydrogen reveal that the geometrical phases may
exhibit the signature of parity-(P-)violation. This invites for possible future
lABSE experiments, focusing on P-violating geometrical phases in the lightest
of all atoms.Comment: 6 pages, 4 figure
- …