8,795 research outputs found

    Generalized Paraxial Ray Trace Procedure Derived from Geodesic Deviation

    Full text link
    Paraxial ray tracing procedures have become widely accepted techniques for acoustic models in seismology and underwater acoustics. To date a generic form of these procedures including fluid motion and time dependence has not appeared in the literature. A detailed investigation of the characteristic curves of the equations of hydrodynamics allows for an immediate generalization of the procedure to be extracted from the equation form geodesic deviation. The general paraxial ray trace equations serve as an ideal supplement to ordinary ray tracing in predicting the deformation of acoustic beams in random environments. The general procedure is derived in terms of affine parameterization and in a coordinate time parameterization ideal for application to physical acoustic ray propagation. The formalism is applied to layered media, where the deviation equation reduces to a second order differential equation for a single field with a general solution in terms of a depth integral along the ray path. Some features are illustrated through special cases which lead to exact solutions in terms of either ordinary or special functions.Comment: Original; 40 pages (double spaced), 1 figure Replaced version; 36 pages single spaced, 7 figures. Expanded content; Complete derivation of the equations from the equations of hydrodynamics, introduction of an auxiliary basis for three dimensional wave-front modeling. Typos in text and equations correcte

    Lectures on Non-BPS Dirichlet branes

    Get PDF
    A comprehensive introduction to the boundary state approach to Dirichlet branes is given. Various examples of BPS and non-BPS Dirichlet branes are discussed. In particular, the non-BPS states in the duality of Type IIA on K3 and the heterotic string on T4 are analysed in detail.Comment: 46 pages, 5 figures, LaTeX; lectures given at the TMR network school on `Quantum aspects of gauge theories, supersymmetry and quantum gravity', Torino, 26 January - 2 February 2000, and at the `Spring workshop on Superstrings and related matters', Trieste, 27 March - 4 April 2000; references adde

    A Tuned and Scalable Fast Multipole Method as a Preeminent Algorithm for Exascale Systems

    Full text link
    Among the algorithms that are likely to play a major role in future exascale computing, the fast multipole method (FMM) appears as a rising star. Our previous recent work showed scaling of an FMM on GPU clusters, with problem sizes in the order of billions of unknowns. That work led to an extremely parallel FMM, scaling to thousands of GPUs or tens of thousands of CPUs. This paper reports on a a campaign of performance tuning and scalability studies using multi-core CPUs, on the Kraken supercomputer. All kernels in the FMM were parallelized using OpenMP, and a test using 10^7 particles randomly distributed in a cube showed 78% efficiency on 8 threads. Tuning of the particle-to-particle kernel using SIMD instructions resulted in 4x speed-up of the overall algorithm on single-core tests with 10^3 - 10^7 particles. Parallel scalability was studied in both strong and weak scaling. The strong scaling test used 10^8 particles and resulted in 93% parallel efficiency on 2048 processes for the non-SIMD code and 54% for the SIMD-optimized code (which was still 2x faster). The weak scaling test used 10^6 particles per process, and resulted in 72% efficiency on 32,768 processes, with the largest calculation taking about 40 seconds to evaluate more than 32 billion unknowns. This work builds up evidence for our view that FMM is poised to play a leading role in exascale computing, and we end the paper with a discussion of the features that make it a particularly favorable algorithm for the emerging heterogeneous and massively parallel architectural landscape

    Algebraic Geometry Realization of Quantum Hall Soliton

    Full text link
    Using Iqbal-Netzike-Vafa dictionary giving the correspondence between the H2_{2} homology of del Pezzo surfaces and p-branes, we develop a new way to approach system of brane bounds in M-theory on S1\mathbb{S}^{1}. We first review the structure of ten dimensional quantum Hall soliton (QHS) from the view of M-theory on S1\mathbb{S}^{1}. Then, we show how the D0 dissolution in D2-brane is realized in M-theory language and derive the p-brane constraint eqs used to define appropriately QHS. Finally, we build an algebraic geometry realization of the QHS in type IIA superstring and show how to get its type IIB dual. Others aspects are also discussed. Keywords: Branes Physics, Algebraic Geometry, Homology of Curves in Del Pezzo surfaces, Quantum Hall Solitons.Comment: 19 pages, 12 figure

    Aspects of Type 0 String Theory

    Get PDF
    A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.Comment: 9 pages, LATEX; submitted to Proceedings of Strings '9

    Winding effects on brane/anti-brane pairs

    Full text link
    We study a brane/anti-brane configuration which is separated along a compact direction by constructing a tachyon effective action which takes into account transverse scalars. Such an action is relevant in the study of HQCD model of Sakai and Sugimoto of chiral symmetry breaking, where the size of the compact circle sets the confinement scale. Our approach is motivated by string theory orbifold constructions and gives a route to model inhomogeneous tachyon decay. We illustrate the techniques involved with a relatively simple example of a harmonic oscillator on a circle. We will then repeat the analysis for the Sakai-Sugimoto model and show that by integrating out the winding modes will provide us with a renormalized action with a lower energy than that of truncating to zero winding sector.Comment: 21 pages, 3 figures. v3: discussion and references added, published versio

    Dirichlet Branes on Orientifolds

    Get PDF
    We consider the classification of BPS and non-BPS D-branes in orientifold models. In particular we construct all stable BPS and non-BPS D-branes in the Gimon-Polchinski (GP) and Dabholkar-Park-Blum-Zaffaroni (DPBZ) orientifolds and determine their stability regions in moduli space as well as decay products. We find several kinds of integrally and torsion charged non-BPS D-branes. Certain of these are found to have projective representations of the orientifold ×\times GSO group on the Chan-Paton factors. It is found that the GP orientifold is not described by equivariant orthogonal K-theory as may have been at first expected. Instead a twisted version of this K-theory is expected to be relevant.Comment: 33 pages, LaTeX, 5 figures. v2 typos corrected, references included, (4,s)-branes re-examine

    Patient Characteristics in Persistent Pulmonary Hypertension of the Newborn

    Get PDF
    Objective. To assess the impact of PPHN on mortality, morbidity, and behavioural skills. Methods. A retrospective observational study of 143 newborns with PPHN, over an 11-year period, using objective health-status data from medical records and family doctors, and subjective health status data from a standardized Child Behaviour Checklist. Results. The majority of patients were males, treated with inhaled nitric oxide had maladaptation/maldevelopment as pathophysiological mechanism and a gestational age >37 weeks. In term newborns, types of pathophysiological mechanism (P < .001) and Oxygen Index (P = .02) were independent predicting risk factors for PPHN-related mortality. Analysis of preexisting disease and outcome categories in term newborns showed only a significant correlation between the use of iNO and respiratory complaints (P = .03), not confirmed by multivariate analysis and regression analysis. Conclusions. PPHN is a serious, often fatal condition. The incidence of PPHN in preterm newborns is high. In term survivors, PPHN had no additional role in morbidity/outcome

    Development and operation of research-scale III-V nanowire growth reactors

    Full text link
    III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy (MOVPE) reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2 X 10−9^{-9} Torr. A load-lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16,000 cm2^2(V.s).Comment: Related papers at http://pettagroup.princeton.ed

    A Torsion Correction to the RR 4-Form Fieldstrength

    Full text link
    The shifted quantization condition of the M-theory 4-form G_4 is well-known. The most naive generalization to type IIA string theory fails, an orientifold counterexample was found by Hori in hep-th/9805141. In this note we use D2-brane anomaly cancellation to find the corresponding shifted quantization condition in IIA. Our analysis is consistent with the known O4-plane tensions if we include a torsion correction to the usual construction of G_4 from C_3, B and G_2. The resulting Bianchi identities enforce that RR fluxes lift to K-theory classes.Comment: 10 Pages, 1 eps figur
    • 

    corecore