75 research outputs found

    D-brane Construction of the 5D NHEK Dual

    Get PDF
    Extremal but non-supersymmetric charged black holes with SU(2)_L spin in IIB string theory compactified to five dimensions on K^3 x S^1 are considered. These have a near-horizon or NHEK region with an enhanced SL(2,R)_L conformal symmetry. It is shown that the NHEK geometry has a second, inequivalent, asymptotically flat extension in which the radius of the S^1 becomes infinite but the radius of the angular circles of SU(2)_L orbits approach a constant. The asymptotic charges associated to the second solution identify it as a 5D D1-D5-Taub-NUT black string with certain nonzero worldvolume charge densities, temperatures and chemical potentials. The dual of the NHEK geometry is then identified as an IR limit of this wrapped brane configuration.Comment: 11 page

    5-dim Superconformal Index with Enhanced En Global Symmetry

    Full text link
    The five-dimensional N=1\mathcal{N}=1 supersymmetric gauge theory with Sp(N) gauge group and SO(2N_f) flavor symmetry describes the physics on N D4-branes with NfN_f D8-branes on top of a single O8 orientifold plane in Type I' theory. This theory is known to be superconformal at the strong coupling limit with the enhanced global symmetry ENf+1E_{N_f+1} for Nf7N_f\le 7. In this work we calculate the superconformal index on S1×S4S^1\times S^4 for the Sp(1) gauge theory by the localization method and confirm such enhancement of the global symmetry at the superconformal limit for Nf5N_f\le 5 to a few leading orders in the chemical potential. Both perturbative and (anti)instanton contributions are present in this calculation. For Nf=6,7N_f=6,7 cases some issues related the pole structure of the instanton calculation could not be resolved and here we could provide only some suggestive answer for the leading contributions to the index. For the Sp(N) case, similar issues related to the pole structure appear.Comment: 70 pages, references added, published versio

    Static Charges in the Low-Energy Theory of the S-Duality Twist

    Full text link
    We continue the study of the low-energy limit of N=4 super Yang-Mills theory compactified on a circle with S-duality and R-symmetry twists that preserve N=6 supersymmetry in 2+1D. We introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory.Comment: 73 pages, two paragraphs added, one to the introduction and one to the discussio

    The Spectrum of Strings on Warped AdS_3 x S^3

    Full text link
    String theory on NS-NS AdS_3 x S^3 admits an exactly marginal deformation which breaks the SL(2,R)_R x SL(2,R)_L isometry of AdS_3 down to SL(2,R)_R x U(1)_L. The holographic dual is an exotic and only partially understood type of two-dimensional CFT with a reduced unbroken global conformal symmetry group. In this paper we study the deformed theory on the string worldsheet. It is found to be related by a spectral flow which is nonlocal in spacetime to the undeformed worldsheet theory. An exact formula for the spectrum of massive strings is presented.Comment: 26 pages, no figure

    Kerr/CFT, dipole theories and nonrelativistic CFTs

    Get PDF
    We study solutions of type IIB supergravity which are SL(2,R) x SU(2) x U(1)^2 invariant deformations of AdS_3 x S^3 x K3 and take the form of products of self-dual spacelike warped AdS_3 and a deformed three-sphere. One of these backgrounds has been recently argued to be relevant for a derivation of Kerr/CFT from string theory, whereas the remaining ones are holographic duals of two-dimensional dipole theories and their S-duals. We show that each of these backgrounds is holographically dual to a deformation of the DLCQ of the D1-D5 CFT by a specific supersymmetric (1,2) operator, which we write down explicitly in terms of twist operators at the free orbifold point. The deforming operator is argued to be exactly marginal with respect to the zero-dimensional nonrelativistic conformal (or Schroedinger) group - which is simply SL(2,R)_L x U(1)_R. Moreover, in the supergravity limit of large N and strong coupling, no other single-trace operators are turned on. We thus propose that the field theory duals to the backgrounds of interest are nonrelativistic CFTs defined by adding the single Schroedinger-invariant (1,2) operator mentioned above to the original CFT action. Our analysis indicates that the rotating extremal black holes we study are best thought of as finite right-moving temperature (non-supersymmetric) states in the above-defined supersymmetric nonrelativistic CFT and hints towards a more general connection between Kerr/CFT and two-dimensional non-relativistic CFTs.Comment: 48+8 pages, 4 figures; minor corrections and references adde

    Schr\"odinger Holography with and without Hyperscaling Violation

    Full text link
    We study the properties of the Schr\"odinger-type non-relativistic holography for general dynamical exponent z with and without hyperscaling violation exponent \theta. The scalar correlation function has a more general form due to general z as well as the presence of \theta, whose effects also modify the scaling dimension of the scalar operator. We propose a prescription for minimal surfaces of this "codimension 2 holography," and demonstrate the (d-1) dimensional area law for the entanglement entropy from (d+3) dimensional Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z < d+2, even without hyperscaling violation, which interpolates between the logarithmic violation and extensive volume dependence of entanglement entropy. Similar violations are also found in the presence of the hyperscaling violation. Their dual field theories are expected to have novel phases for the parameter range, including Fermi surface. We also analyze string theory embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected, references added, v3: typos corrected, references added, published versio

    Non-Supersymmetric String Theory

    Full text link
    A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.Comment: 35 pages, 2 figures; revision adds a computation of the relevant orbifold state
    corecore