53 research outputs found
Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal
We report on an anomalous behavior of the spin-splitting zeros in the de
Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic
superconductor. The zeros as well as the angular dependence of the amplitude of
the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK)
prediction. In contrast, the angular dependence of the fundamental dHvA
amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas signal
follow the LK theory. We can explain this behavior by small chemical-potential
oscillations and find a very good agreement between theory and experiment. A
detailed wave-shape analysis of the dHvA signal corroborates the existence of
an oscillating chemical potential
Electromagnetic response of a static vortex line in a type-II superconductor : a microscopic study
The electromagnetic response of a pinned Abrikosov fluxoid is examined in the
framework of the Bogoliubov-de Gennes formalism. The matrix elements and the
selection rules for both the single photon (emission - absorption) and two
photon (Raman scattering) processes are obtained. The results reveal striking
asymmetries: light absorption by quasiparticle pair creation or single
quasiparticle scattering can occur only if the handedness of the incident
radiation is opposite to that of the vortex core states. We show how these
effects will lead to nonreciprocal circular birefringence, and also predict
structure in the frequency dependence of conductivity and in the differential
cross section of the Raman scattering.Comment: 14 pages (RevTex
Prediction of inorganic superconductors with quasi-one-dimensional crystal structure
Models of superconductors having a quasi-one-dimensional crystal structure
based on the convoluted into a tube Ginzburg sandwich, which comprises a
layered dielectric-metal-dielectric structure, have been suggested. The
critical crystal chemistry parameters of the Ginzburg sandwich determining the
possibility of the emergence of superconductivity and the Tc value in layered
high-Tc cuprates, which could have the same functions in quasi-one-dimensional
fragments (sandwich-type tubes), have been examined. The crystal structures of
known low-temperature superconductors, in which one can mark out similar
quasi-one- dimensional fragments, have been analyzed. Five compounds with
quasi-one-dimensional structures, which can be considered as potential parents
of new superconductor families, possibly with high transition temperatures,
have been suggested. The methods of doping and modification of these compounds
are provided.Comment: 22 pages, 14 figures and 2 table
Gender differences in coerced patients with schizophrenia
European Commission (Quality of life and
Management of Living Resources Programme, contract number QLG4-CT-
2002-01036), Czech Ministry of Education research grant MSM002160849,
and research grants PRVOUK–P26/LF1/4 and PRVOUK–P03/LF1/
The Flux-Line Lattice in Superconductors
Magnetic flux can penetrate a type-II superconductor in form of Abrikosov
vortices. These tend to arrange in a triangular flux-line lattice (FLL) which
is more or less perturbed by material inhomogeneities that pin the flux lines,
and in high- supercon- ductors (HTSC's) also by thermal fluctuations. Many
properties of the FLL are well described by the phenomenological
Ginzburg-Landau theory or by the electromagnetic London theory, which treats
the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft
mainly because of the large magnetic penetration depth: The shear modulus of
the FLL is thus small and the tilt modulus is dispersive and becomes very small
for short distortion wavelength. This softness of the FLL is enhanced further
by the pronounced anisotropy and layered structure of HTSC's, which strongly
increases the penetration depth for currents along the c-axis of these uniaxial
crystals and may even cause a decoupling of two-dimensional vortex lattices in
the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause
thermally activated depinning of the flux lines or of the 2D pancake vortices
in the layers. Various phase transitions are predicted for the FLL in layered
HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to
interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do
not exist as postscript file
- …