51 research outputs found

    Damping of dHvA oscillations and vortex-lattice disorder in the peak-effect region of strong type-II superconductors

    Full text link
    The phenomenon of magnetic quantum oscillations in the superconducting state poses several questions that still defy satisfactory answers. A key controversial issue concerns the additional damping observed in the vortex state. Here, we show results of \mu SR, dHvA, and SQUID magnetization measurements on borocarbide superconductors, indicating that a sharp drop observed in the dHvA amplitude just below H_{c2} is correlated with enhanced disorder of the vortex lattice in the peak-effect region, which significantly enhances quasiparticle scattering by the pair potential.Comment: 4 pages 4 figure

    Large Broadening of the Superconducting Transition by Fluctuations in a 3D Metal at High Magnetic Fields: The MgB2_{2} case

    Full text link
    It is shown that the transition to the low temperature superconducting state in a 3D metal at high magnetic field is smeared dramatically by thermal fluctuation of the superconducting order parameter. The resulting superconducting-to-normal crossover occurs in a vortex liquid state which is extended well below the mean-field Hc2H_{c2}. Application to MgB2_{2} yields good quantitative agreement with recently reported data of dHvA oscillation in the superconducting state

    Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal

    Full text link
    We report on an anomalous behavior of the spin-splitting zeros in the de Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic superconductor. The zeros as well as the angular dependence of the amplitude of the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK) prediction. In contrast, the angular dependence of the fundamental dHvA amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas signal follow the LK theory. We can explain this behavior by small chemical-potential oscillations and find a very good agreement between theory and experiment. A detailed wave-shape analysis of the dHvA signal corroborates the existence of an oscillating chemical potential

    Electromagnetic response of a static vortex line in a type-II superconductor : a microscopic study

    Full text link
    The electromagnetic response of a pinned Abrikosov fluxoid is examined in the framework of the Bogoliubov-de Gennes formalism. The matrix elements and the selection rules for both the single photon (emission - absorption) and two photon (Raman scattering) processes are obtained. The results reveal striking asymmetries: light absorption by quasiparticle pair creation or single quasiparticle scattering can occur only if the handedness of the incident radiation is opposite to that of the vortex core states. We show how these effects will lead to nonreciprocal circular birefringence, and also predict structure in the frequency dependence of conductivity and in the differential cross section of the Raman scattering.Comment: 14 pages (RevTex

    Evidence of Andreev bound states as a hallmark of the FFLO phase in Îș\kappa-(BEDT-TTF)2_2Cu(NCS)2_2

    Full text link
    Superconductivity is a quantum phenomena arising, in its simplest form, from pairing of fermions with opposite spin into a state with zero net momentum. Whether superconductivity can occur in fermionic systems with unequal number of two species distinguished by spin, atomic hyperfine states, flavor, presents an important open question in condensed matter, cold atoms, and quantum chromodynamics, physics. In the former case the imbalance between spin-up and spin-down electrons forming the Cooper pairs is indyced by the magnetic field. Nearly fifty years ago Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed that such imbalanced system can lead to exotic superconductivity in which pairs acquire finite momentum. The finite pair momentum leads to spatially inhomogeneous state consisting of of a periodic alternation of "normal" and "superconducting" regions. Here, we report nuclear magnetic resonance (NMR) measurements providing microscopic evidence for the existence of this new superconducting state through the observation of spin-polarized quasiparticles forming so-called Andreev bound states.Comment: 6 pages, 5 fig

    Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    Full text link
    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric-metal-dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the Tc value in layered high-Tc cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one- dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided.Comment: 22 pages, 14 figures and 2 table

    Fermi surface of a system with strong valence fluctuations : evidence for a noninteger count of valence electrons in EuIr2Si2

    Get PDF
    We present de Haas-van Alphen (dHvA) measurements on an Eu-based valence-fluctuating system. EuIr2Si2 exhibits a temperature-dependent, noninteger europium valence with Eu2.8+ at low temperatures. The comparison of experimental results from our magnetic-torque experiments in fields up to 32 T and density functional theory band-structure calculations with localized 4f electrons shows that the best agreement is reached for a Fermi surface based on a valence of Eu2.8+. The calculated quantum-oscillation frequencies for Eu3+ instead cannot explain all the experimentally observed frequencies. The effective masses, derived from the temperature dependence of the dHvA oscillation amplitudes, show not only a significant enhancement with masses up to 11me (me being the free electron mass), but also a magnetic-field dependence of the heaviest mass. We attribute the formation of these heavy masses to strong correlation effects resulting from valence fluctuations of 4f electrons being strongly hybridized with conduction electrons. The increase of the heavy masses with magnetic field likely results from the onset of the expected field-induced valence crossover that enhances these valence fluctuations but does not alter the Fermi-surface topology in the field range studied

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file
    • 

    corecore