113 research outputs found

    Synchronization Gauges and the Principles of Special Relativity

    Full text link
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of `theories' that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl synchronization gauge and, finally, to the even more general Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all these gauges do not challenge the SRT, as claimed by Selleri, but simply lead to a number of formalisms which leave the geometrical structure of Minkowski spacetime unchanged. Several aspects of fundamental and applied interest related to the conventional aspect of the synchronization choice are discussed, encompassing the issue of the one-way velocity of light on inertial and rotating reference frames, the GPS's working, and the recasting of Maxwell equations in generic synchronizations. Finally, it is showed how the gauge freedom introduced in SRT can be exploited in order to give a clear explanation of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday

    The MEDGICarb-Study: Design of a multi-center randomized controlled trial to determine the differential health-promoting effects of low- and high-glycemic index Mediterranean-style eating patterns

    Get PDF
    Adults with central adiposity and other features of the metabolic syndrome have a markedly elevated risk of developing type 2 diabetes (T2D) and cardiovascular disease (CVD). A Mediterranean-style healthy eating pattern (MED-HEP) and consumption of foods with a lower glycemic index (GI) are potential dietary approaches to curb the T2D and CVD epidemic. However, experimental evidence of the effectiveness of MED-HEP and of the contribution of GI towards improving indices of glucose homeostasis, especially among non-diabetic people, are lacking. Therefore, we developed the MedGI-Carb trial, a multi-center (Italy, Sweden, and United States) intervention in adults with at least two components of the metabolic syndrome (elevated waist circumference + one other component) that aims to improve markers of glucose homeostasis through dietary modification. All participants were randomized to consume an isocaloric high- or low-GI MED-HEP for 12 weeks. We hypothesized that indexes of insulinemia (primary outcome: postprandial insulin and glucose after standardized breakfast and lunch; secondary outcomes: fasting plasma glucose and insulin, HbA1c, 24-h continuous glucose monitoring) would be improved more with the low-GI versus the high-GI MED-HEP. Additionally, we hypothesized that consumption of a MED-HEP would improve other markers of cardiometabolic health and well-being (fasting blood pressure, fasting lipid profile, sleep quality, satiety, global metabolic alterations in the plasma metabolome, changes in the gut microbiota, subjective health and well-being), with no difference between groups. Collectively, the design of MEDGI-Carb allows several different research questions to be explored. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03410719

    A direct kinematical derivation of the relativistic Sagnac effect for light or matter beams

    Full text link
    The Sagnac time delay and the corresponding Sagnac phase shift, for relativistic matter and electromagnetic beams counter-propagating in a rotating interferometer, are deduced on the ground of relativistic kinematics. This purely kinematical approach allows to explain the ''universality'' of the effect, namely the fact that the Sagnac time difference does not depend on the physical nature of the interfering beams. The only prime requirement is that the counter-propagating beams have the same velocity with respect to any Einstein synchronized local co-moving inertial frame.Comment: 10 pages, 1 EPS figure, to appear in General Relativity and Gravitatio

    The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation, in a self-consistently relativistic way, of the Sagnac effect. Sakurai's result is recovered in the first order approximation.Comment: 18 pages, LaTeX, 2 EPS figures. To appear in General Relativity and Gravitatio

    The relativistic Sagnac Effect: two derivations

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter and electromagnetic beams, counter-propagating in a rotating interferometer, is deduced using two different approaches. From one hand, we show that the relativistic law of velocity addition leads to the well known Sagnac time difference, which is the same independently of the physical nature of the interfering beams, evidencing in this way the universality of the effect. Another derivation is based on a formal analogy with the phase shift induced by the magnetic potential for charged particles travelling in a region where a constant vector potential is present: this is the so called Aharonov-Bohm effect. Both derivations are carried out in a fully relativistic context, using a suitable 1+3 splitting that allows us to recognize and define the space where electromagnetic and matter waves propagate: this is an extended 3-space, which we call "relative space". It is recognized as the only space having an actual physical meaning from an operational point of view, and it is identified as the 'physical space of the rotating platform': the geometry of this space turns out to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also http://digilander.libero.it/solciclo

    Recensioni

    No full text

    Recensioni

    No full text
    • …
    corecore