188 research outputs found

    PI3K-C2 alpha Knockdown Results in Rerouting of Insulin Signaling and Pancreatic Beta Cell Proliferation

    Get PDF
    Insulin resistance is a syndrome that affects multiple insulin target tissues, each having different biological functions regulated by insulin. A remaining question is to mechanistically explain how an insulin target cell/tissue can be insulin resistant in one biological function and insulin sensitive in another at the same time. Here, we provide evidence that in pancreatic beta cells, knockdown of PI3K-C2 alpha expression results in rerouting of the insulin signal from insulin receptor (IR)-B/PI3K-C2 alpha/PKB-mediated metabolic signaling to IR-B/Shc/ERK-mediated mitogenic signaling, which allows the beta cell to switch from a highly glucose-responsive, differentiated state to a proliferative state. Our data suggest the existence of IR-cascade-selective insulin resistance, which allows rerouting of the insulin signal within the same target cell. Hence, factors involved in the rerouting of the insulin signal represent tentative therapeutic targets in the treatment of insulin resistance.11108Ysciescopu

    Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    Get PDF
    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors.111615Ysciescopu

    Short Telomeres Compromise β-Cell Signaling and Survival

    Get PDF
    The genetic factors that underlie the increasing incidence of diabetes with age are poorly understood. We examined whether telomere length, which is inherited and known to shorten with age, plays a role in the age-dependent increased incidence of diabetes. We show that in mice with short telomeres, insulin secretion is impaired and leads to glucose intolerance despite the presence of an intact β-cell mass. In ex vivo studies, short telomeres induced cell-autonomous defects in β-cells including reduced mitochondrial membrane hyperpolarization and Ca2+ influx which limited insulin release. To examine the mechanism, we looked for evidence of apoptosis but found no baseline increase in β-cells with short telomeres. However, there was evidence of all the hallmarks of senescence including slower proliferation of β-cells and accumulation of p16INK4a. Specifically, we identified gene expression changes in pathways which are essential for Ca2+-mediated exocytosis. We also show that telomere length is additive to the damaging effect of endoplasmic reticulum stress which occurs in the late stages of type 2 diabetes. This additive effect manifests as more severe hyperglycemia in Akita mice with short telomeres which had a profound loss of β-cell mass and increased β-cell apoptosis. Our data indicate that short telomeres can affect β-cell metabolism even in the presence of intact β-cell number, thus identifying a novel mechanism of telomere-mediated disease. They implicate telomere length as a determinant of β-cell function and diabetes pathogenesis

    Dental Fear: One Single Clinical Question for Measurement

    Get PDF
    A new dental fear measurement instrument, the Short Dental Fear Question (SDFQ), was developed and tested for clinical practice purposes. The correlations of the SDFQ with the Dental Anxiety Scale (DAS) and the Dental Fear Survey (DFS) were tested in 15-16-year-old adolescents. The Spearman correlations (rs) between the dental fear measurement instruments were: SDFQ – DFS: rs = 0.79, n = 26; DFS – DAS: rs = 0.72, n = 26; SDFQ– DAS: rs = 0.69, n = 27. DAS and DFS mean scores were clearly higher in the SDFQ fear group than SDFQ in the relaxed group. The SDFQ is a short and compact instrument which might be convenient for the measurement of dental fear in clinical practice

    The vicious cycle of dental fear: exploring the interplay between oral health, service utilization and dental fear

    Get PDF
    BACKGROUND: Based on the hypothesis that a vicious cycle of dental fear exists, whereby the consequences of fear tend to maintain that fear, the relationship between dental fear, self-reported oral health status and the use of dental services was explored. METHODS: The study used a telephone interview survey with interviews predominantly conducted in 2002. A random sample of 6,112 Australian residents aged 16 years and over was selected from 13 strata across all States and Territories. Data were weighted across strata and by age and sex to obtain unbiased population estimates. RESULTS: People with higher dental fear visited the dentist less often and indicated a longer expected time before visiting a dentist in the future. Higher dental fear was associated with greater perceived need for dental treatment, increased social impact of oral ill-health and worse self-rated oral health. Visiting patterns associated with higher dental fear were more likely to be symptom driven with dental visits more likely to be for a problem or for the relief of pain. All the relationships assumed by a vicious cycle of dental fear were significant. In all, 29.2% of people who were very afraid of going to the dentist had delayed dental visiting, poor oral health and symptom-driven treatment seeking compared to 11.6% of people with no dental fear. CONCLUSION: Results are consistent with a hypothesised vicious cycle of dental fear whereby people with high dental fear are more likely to delay treatment, leading to more extensive dental problems and symptomatic visiting patterns which feed back into the maintenance or exacerbation of existing dental fear

    Imaging Cyclic AMP Changes in Pancreatic Islets of Transgenic Reporter Mice

    Get PDF
    Cyclic AMP (cAMP) and Ca2+ are two ubiquitous second messengers in transduction pathways downstream of receptors for hormones, neurotransmitters and local signals. The availability of fluorescent Ca2+ reporter dyes that are easily introduced into cells and tissues has facilitated analysis of the dynamics and spatial patterns for Ca2+ signaling pathways. A similar dissection of the role of cAMP has lagged because indicator dyes do not exist. Genetically encoded reporters for cAMP are available but they must be introduced by transient transfection in cell culture, which limits their utility. We report here that we have produced a strain of transgenic mice in which an enhanced cAMP reporter is integrated in the genome and can be expressed in any targeted tissue and with tetracycline induction. We have expressed the cAMP reporter in β-cells of pancreatic islets and conducted an analysis of intracellular cAMP levels in relation to glucose stimulation, Ca2+ levels, and membrane depolarization. Pancreatic function in transgenic mice was normal. In induced transgenic islets, glucose evoked an increase in cAMP in β-cells in a dose-dependent manner. The cAMP response is independent of (in fact, precedes) the Ca2+ influx that results from glucose stimulation of islets. Glucose-evoked cAMP responses are synchronous in cells throughout the islet and occur in 2 phases suggestive of the time course of insulin secretion. Insofar as cAMP in islets is known to potentiate insulin secretion, the novel transgenic mouse model will for the first time permit detailed analyses of cAMP signals in β-cells within islets, i.e. in their native physiological context. Reporter expression in other tissues (such as the heart) where cAMP plays a critical regulatory role, will permit novel biomedical approaches

    Search for the standard model Higgs boson at LEP

    Get PDF

    The Role of Thioredoxin Reductases in Brain Development

    Get PDF
    The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS)-specific deletion of cytosolic (Txnrd1) and mitochondrial (Txnrd2) thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL) was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases
    corecore