4 research outputs found

    An ex vivo model of Toxoplasma recrudescence reveals developmental plasticity of the bradyzoite stage

    No full text
    ABSTRACT The recrudescence of Toxoplasma cysts is the cause of clinical disease in the immunocompromised. Although Toxoplasma has been a useful parasite model for decades because it is relatively easy to genetically modify and culture, attempts to generate and study the recrudescence of tissue cysts have come up short with cell culture-adapted strains generating low numbers of tissue cysts in vivo. Taking advantage of a new ex vivo model of Toxoplasma recrudescence that uses a Type II ME49 strain unadapted to cell culture, we determined the cell biology, gene expression, and host cell dependency that define bradyzoite-cyst reactivation. Bradyzoite infection of fibroblasts and astrocytes produced sequential tachyzoite growth stages with pre-programmed kinetics; thus, an initial fast-growing stage was followed by a slow-growing replicating form. In vivo infections demonstrated that only fast growth tachyzoites, and not parasites post-growth shift, led to successful parasite dissemination to the brain and peripheral organs. In astrocytes, cells that reside in the central nervous system (CNS), bradyzoites initiated an additional recrudescent pathway involving brady-brady replication, which is a pathway not observed in fibroblasts. To investigate the molecular basis of growth and cell-dependent reactivation pathways, single-cell mRNA sequencing was performed on recrudescing parasites, revealing distinct gene signatures of these parasite populations and confirming multifunctionality of the original ex vivo bradyzoite population. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle. IMPORTANCE The classical depiction of the Toxoplasma lifecycle is bradyzoite excystation conversion to tachyzoites, cell lysis, and immune control, followed by the reestablishment of bradyzoites and cysts. In contrast, we show that tachyzoite growth slows independent of the host immune response at a predictable time point following excystation. Furthermore, we demonstrate a host cell-dependent pathway of continuous amplification of the cyst-forming bradyzoite population. The developmental plasticity of the excysted bradyzoites further underlines the critical role the cyst plays in the flexibility of the lifecycle of this ubiquitous parasite. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle

    Health disparities in COVID-19: immune and vascular changes are linked to disease severity and persist in a high-risk population in Riverside County, California

    No full text
    Abstract Background Health disparities in underserved communities, such as inadequate healthcare access, impact COVID-19 disease outcomes. These disparities are evident in Hispanic populations nationwide, with disproportionately high infection and mortality rates. Furthermore, infected individuals can develop long COVID with sustained impacts on quality of life. The goal of this study was to identify immune and endothelial factors that are associated with COVID-19 outcomes in Riverside County, a high-risk and predominantly Hispanic community, and investigate the long-term impacts of COVID-19 infection. Methods 112 participants in Riverside County, California, were recruited according to the following criteria: healthy control (n = 23), outpatients with moderate infection (outpatient, n = 33), ICU patients with severe infection (hospitalized, n = 33), and individuals recovered from moderate infection (n = 23). Differences in outcomes between Hispanic and non-Hispanic individuals and presence/absence of co-morbidities were evaluated. Circulating immune and vascular biomarkers were measured by ELISA, multiplex analyte assays, and flow cytometry. Follow-up assessments for long COVID, lung health, and immune and vascular changes were conducted after recovery (n = 23) including paired analyses of the same participants. Results Compared to uninfected controls, the severe infection group had a higher proportion of Hispanic individuals (n = 23, p = 0.012) than moderate infection (n = 8, p = 0.550). Disease severity was associated with changes in innate monocytes and neutrophils, lymphopenia, disrupted cytokine production (increased IL-8 and IP-10/CXCL10 but reduced IFNλ2/3 and IFNγ), and increased endothelial injury (myoglobin, VCAM-1). In the severe infection group, a machine learning model identified LCN2/NGAL, IL-6, and monocyte activation as parameters associated with fatality while anti-coagulant therapy was associated with survival. Recovery from moderate COVID infection resulted in long-term immune changes including increased monocytes/lymphocytes and decreased neutrophils and endothelial markers. This group had a lower proportion of co-morbidities (n = 8, p = 1.0) but still reported symptoms associated with long COVID despite recovered pulmonary function. Conclusion This study indicates increased severity of COVID-19 infection in Hispanic individuals of Riverside County, California. Infection resulted in immunological and vascular changes and long COVID symptoms that were sustained for up to 11 months, however, lung volume and airflow resistance was recovered. Given the immune and behavioral impacts of long COVID, the potential for increased susceptibility to infections and decreased quality of life in high-risk populations warrants further investigation
    corecore