10 research outputs found

    Words and polynomial invariants of finite groups in non-commutative variables

    Get PDF
    Let V be a complex vector space with basis {x_1,x_2,...,x_n} and G be a finite subgroup of GL(V). The tensor algebra T(V) over the complex is isomorphic to the polynomials in the non-commutative variables x_1, x_2,..., x_n with complex coefficients. We want to give a combinatorial interpretation for the decomposition of T(V) into simple G-modules. In particular, we want to study the graded space of invariants in T(V) with respect to the action of G. We give a general method for decomposing the space T(V) into simple modules in terms of words in a Cayley graph of the group G. To apply the method to a particular group, we require a homomorphism from a subalgebra of the group algebra into the character algebra. In the case of G as the symmetric group, we give an example of this homomorphism from the descent algebra. When G is the dihedral group, we have a realization of the character algebra as a subalgebra of the group algebra. In those two cases, we have an interpretation for the graded dimensions of the invariant space in term of those words

    Invariants in Non-Commutative Variables of the Symmetric and Hyperoctahedral Groups

    Get PDF
    We consider the graded Hopf algebra NCSymNCSym of symmetric functions with non-commutative variables, which is analogous to the algebra SymSym of the ordinary symmetric functions in commutative variables. We give formulaes for the product and coproduct on some of the analogues of the SymSym bases and expressions for a shuffle product on NCSymNCSym. We also consider the invariants of the hyperoctahedral group in the non-commutative case and a state a few results

    Words and polynomial invariants of finite groups in non-commutative variables

    Get PDF
    Let VV be a complex vector space with basis {x1,x2,…,xn}\{x_1,x_2,\ldots,x_n\} and GG be a finite subgroup of GL(V)GL(V). The tensor algebra T(V)T(V) over the complex is isomorphic to the polynomials in the non-commutative variables x1,x2,…,xnx_1, x_2, \ldots, x_n with complex coefficients. We want to give a combinatorial interpretation for the decomposition of T(V)T(V) into simple GG-modules. In particular, we want to study the graded space of invariants in T(V)T(V) with respect to the action of GG. We give a general method for decomposing the space T(V)T(V) into simple GG-module in terms of words in a particular Cayley graph of GG. To apply the method to a particular group, we require a surjective homomorphism from a subalgebra of the group algebra into the character algebra. In the case of the symmetric group, we give an example of this homomorphism from the descent algebra. When GG is the dihedral group, we have a realization of the character algebra as a subalgebra of the group algebra. In those two cases, we have an interpretation for the graded dimensions of the invariant space in term of those words

    Words and Noncommutative Invariants of the Hyperoctahedral Group

    No full text
    Let Bn\mathcal{B}_n be the hyperoctahedral group acting on a complex vector space V\mathcal{V}. We present a combinatorial method to decompose the tensor algebra T(V)T(\mathcal{V}) on V\mathcal{V} into simple modules via certain words in a particular Cayley graph of Bn\mathcal{B}_n. We then give combinatorial interpretations for the graded dimension and the number of free generators of the subalgebra T(V)BnT(\mathcal{V})^{\mathcal{B}_n} of invariants of Bn\mathcal{B}_n, in terms of these words, and make explicit the case of the signed permutation module. To this end, we require a morphism from the Mantaci-Reutenauer algebra onto the algebra of characters due to Bonnafé and Hohlweg.Soit Bn\mathcal{B}_n le groupe hyperoctaédral agissant sur un espace vectoriel complexe V\mathcal{V}. Nous présentons une méthode combinatoire donnant la décomposition de l'algèbre T(V)T(\mathcal{V}) des tenseurs sur V\mathcal{V} en modules simples via certains mots dans un graphe de Cayley donné. Nous donnons ensuite des interprétations combinatoires pour la dimension graduée et le nombre de générateurs libres de la sous-algèbre T(V)BnT(\mathcal{V})^{\mathcal{B}_n} des invariants de Bn\mathcal{B}_n, en termes de ces mots, et explicitons le cas du module de permutation signé. À cette fin, nous utilisons un morphisme entre l'algèbre de Mantaci-Reutenauer et l'algèbre des caractères introduit par Bonnafé et Hohlweg

    Invariants in Non-Commutative Variables of the Symmetric and Hyperoctahedral Groups

    Get PDF
    We consider the graded Hopf algebra NCSymNCSym of symmetric functions with non-commutative variables, which is analogous to the algebra SymSym of the ordinary symmetric functions in commutative variables. We give formulaes for the product and coproduct on some of the analogues of the SymSym bases and expressions for a shuffle product on NCSymNCSym. We also consider the invariants of the hyperoctahedral group in the non-commutative case and a state a few results.Nous considérons l'algèbre de Hopf graduée NCSymNCSym des fonctions symétriques en variables non-commutatives, qui est analogue à l'algèbre SymSym des fonctions symétriques en variables commutatives. Nous donnons des formules pour le produit et coproduit sur certaines des bases analogues à celles de SymSym, ainsi qu'une expression pour le produit shuffle\textit{shuffle} sur NCSymNCSym. Nous considérons aussi les invariants du groupe hyperoctaédral dans le cas non-commutatif et énonçons quelques résultats

    Words and polynomial invariants of finite groups in non-commutative variables

    No full text
    Let VV be a complex vector space with basis {x1,x2,…,xn}\{x_1,x_2,\ldots,x_n\} and GG be a finite subgroup of GL(V)GL(V). The tensor algebra T(V)T(V) over the complex is isomorphic to the polynomials in the non-commutative variables x1,x2,…,xnx_1, x_2, \ldots, x_n with complex coefficients. We want to give a combinatorial interpretation for the decomposition of T(V)T(V) into simple GG-modules. In particular, we want to study the graded space of invariants in T(V)T(V) with respect to the action of GG. We give a general method for decomposing the space T(V)T(V) into simple GG-module in terms of words in a particular Cayley graph of GG. To apply the method to a particular group, we require a surjective homomorphism from a subalgebra of the group algebra into the character algebra. In the case of the symmetric group, we give an example of this homomorphism from the descent algebra. When GG is the dihedral group, we have a realization of the character algebra as a subalgebra of the group algebra. In those two cases, we have an interpretation for the graded dimensions of the invariant space in term of those words.Soit V un espace vectoriel complexe de base {x1,x2,…,xn}\{x_1,x_2,\ldots,x_n\} et GG un sous-groupe fini de GL(V)GL(V). L'algèbre T(V)T(V) des tenseurs de VV sur les complexes est isomorphe aux polynômes à coefficients complexes en variables non-commutatives x1,x2,…,xnx_1, x_2, \ldots, x_n. Nous voulons donner une décomposition de T(V)T(V) en GG-modules simples de manière combinatoire. Plus particulièrement, nous étudions l'espace gradué des invariants de T(V)T(V) sous l'action de GG. Nous présentons une méthode générale donnant la décomposition de T(V)T(V) en modules simples via certains mots dans un graphe de Cayley donné. Pour appliquer la méthode à un groupe particulier, nous avons besoin d'un homomorphisme surjectif entre une sous-algèbre de l'algèbre de groupe et l'algèbre des caractères. Pour le cas du groupe symétrique, nous donnons un exemple de cet homomorphisme qui provient de la théorie de l'algèbre des descentes. Pour le groupe diédral, nous avons une réalisation de l'algèbre des caractères comme une sous-algèbre de l'algèbre de groupe. Dans ces deux cas, nous avons une interprétation des dimensions graduées de l'espace des invariants en terme de ces mots
    corecore