36 research outputs found

    Seven-Pass Transmembrane Cadherins: Roles and Emerging Mechanisms in Axonal and Dendritic Patterning

    Get PDF
    The Flamingo/Celsr seven-transmembrane cadherins represent a conserved subgroup of the cadherin superfamily involved in multiple aspects of development. In the developing nervous system, Fmi/Celsr control axonal blueprint and dendritic morphogenesis from invertebrates to mammals. As expected from their molecular structure, seven-transmembrane cadherins can induce cell–cell homophilic interactions but also intracellular signaling. Fmi/Celsr is known to regulate planar cell polarity (PCP) through interactions with PCP proteins. In the nervous system, Fmi/Celsr can function in collaboration with or independently of other PCP genes. Here, we focus on recent studies which show that seven-transmembrane cadherins use distinct molecular mechanisms to achieve diverse functions in the development of the nervous system

    Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus

    Get PDF
    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Drug discovery in advanced prostate cancer: translating biology into therapy.

    Get PDF
    Castration-resistant prostate cancer (CRPC) is associated with a poor prognosis and poses considerable therapeutic challenges. Recent genetic and technological advances have provided insights into prostate cancer biology and have enabled the identification of novel drug targets and potent molecularly targeted therapeutics for this disease. In this article, we review recent advances in prostate cancer target identification for drug discovery and discuss their promise and associated challenges. We review the evolving therapeutic landscape of CRPC and discuss issues associated with precision medicine as well as challenges encountered with immunotherapy for this disease. Finally, we envision the future management of CRPC, highlighting the use of circulating biomarkers and modern clinical trial designs

    Docetaxel-related fatigue in men with metastatic prostate cancer: a descriptive analysis

    No full text
    Purpose: Fatigue is a prevalent and debilitating side effect of docetaxel chemotherapy in metastatic prostate cancer. A better understanding of the kinetics and nature of docetaxel-related fatigue may provide a framework for intervention. Methods: This secondary analysis was performed using the MOTIF database, from a phase III, randomised, double-blind, placebo-controlled study of modafinil (200 mg/day for 15 days) for docetaxel-related fatigue in men with metastatic prostate cancer [1]. The pattern of fatigue was analysed using the MDASI (MD Anderson Symptom Inventory) score. The impact of modafinil, cumulative docetaxel exposure, age and smoking status on fatigue kinetics were explored. Fatigue-related symptoms were assessed using the SOMA6 (fatigue and related symptoms) subset of the SPHERE (Somatic and Psychological Health Report). Mood was tracked using the short form 36 health survey questionnaire (SF-36). Results: Across four docetaxel cycles, fatigue scores were higher in the first week and decreased over weeks two and three. Whilst men randomised to modafinil had reduced fatigue scores, cumulative docetaxel had little impact. Younger men (55–68 years) had significantly reduced fatigue scores, whereas current and ex-smokers had higher scores. There was no significant change in mood status or haemoglobin across treatment cycles. Men described both ‘somnolence’ and ‘muscle fatigue’ contributing significantly to their symptom complex. Conclusions: Assessment and management of docetaxel-related fatigue remains an important challenge. Given the complex, multifactorial nature of fatigue, identification through structured interview and interventions targeted to specific ‘at risk’ groups may be the most beneficial. Understanding the temporal pattern (kinetics) and nature of fatigue is critical to guide this process
    corecore