62,719 research outputs found
Stable boundary conditions for Cartesian grid calculations
The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This requires solid wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be orders of magnitude smaller than the regular grid cells, stability is a primary concern. An approach to this problem is presented and its use is illustrated
A partitioning strategy for nonuniform problems on multiprocessors
The partitioning of a problem on a domain with unequal work estimates in different subddomains is considered in a way that balances the work load across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. A binary decomposition of the domain is used to partition it into rectangles requiring equal computational effort. The communication costs of mapping this partitioning onto different microprocessors: a mesh-connected array, a tree machine and a hypercube is then studied. The communication cost expressions can be used to determine the optimal depth of the above partitioning
Automatic adaptive grid refinement for the Euler equations
A method of adaptive grid refinement for the solution of the steady Euler equations for transonic flow is presented. Algorithm automatically decides where the coarse grid accuracy is insufficient, and creates locally uniform refined grids in these regions. This typically occurs at the leading and trailing edges. The solution is then integrated to steady state using the same integrator (FLO52) in the interior of each grid. The boundary conditions needed on the fine grids are examined and the importance of treating the fine/coarse grid inerface conservatively is discussed. Numerical results are presented
Oscillatory approach to the singularity in vacuum symmetric spacetimes
A combination of qualitative analysis and numerical study indicates that
vacuum symmetric spacetimes are, generically, oscillatory.Comment: 2 pages submitted to the Ninth Marcel Grossmann Proceedings; v2, "all
known cases" changed to "various known cases" in the first paragrap
Cities in fiction: Perambulations with John Berger
This paper explores selected novels by John Berger in which cities play a central role. These cities are places, partially real and partially imagined, where memory, hope, and despair intersect. My reading of the novels enables me to trace important themes in recent discourses on the nature of contemporary capitalism, including notions of resistance and universality. I also show how Berger?s work points to a writing that can break free from the curious capacity of capitalism to absorb and feed of its critique
An upper limit on CP violation in the system
In a previous publication we noted that the time dependence of an incoherent
mixture undergoes a qualitative change when the magnitude of CP
violation exceeds a critical value. Requiring, on physical grounds,
that the system evolve from an initial incoherent state to a final pure state
in a monotonic way, yields a new upper limit for . The recent
measurement of the wrong charge semileptonic asymmetry of mesons
presented by the D0 collaboration is outside this bound by one standard
deviation. If this result is confirmed it implies the existence of a new
quantum mechanical oscillation phenomenon.Comment: 7 pages, 2 figures, version submitted for publication (Physical
Review
Some new results on electron transport in the atmosphere
The penetration, diffusion and slowing down of electrons in a semi-infinite air medium has been studied by the Monte Carlo method. The results are applicable to the atmosphere at altitudes up to 300 km. Most of the results pertain to monoenergetic electron beams injected into the atmosphere at a height of 300 km, either vertically downwards or with a pitch-angle distribution isotropic over the downward hemisphere. Some results were also obtained for various initial pitch angles between 0 deg and 90 deg. Information has been generated concerning the following topics: (1) the backscattering of electrons from the atmosphere, expressed in terms of backscattering coefficients, angular distributions and energy spectra of reflected electrons, for incident energies T(o) between 2 keV and 2 MeV; (2) energy deposition by electrons as a function of the altitude, down to 80 km, for T(o) between 2 keV and 2 MeV; (3) the corresponding energy depostion by electron-produced bremsstrahlung, down to 30 km; (4) the evolution of the electron flux spectrum as function of the atmospheric depth, for T(o) between 2 keV and 20 keV. Energy deposition results are given for incident electron beams with exponential and power-exponential spectra
Erratum: Next-to-leading order supersymmetric QCD predictions for associated production of gauginos and gluinos [Phys. Rev. D 62, 095014 (2000)]
Errors in the published version of the paper are corrected, and new figures
are provided.Comment: 3 pages, latex, 4 figure
Production of a Prompt Photon in Association with Charm at Next-to-Leading Order in QCD
A second order, , calculation in perturbative quantum
chromodynamics of the two particle inclusive cross section is presented for the
reaction for large values of the
transverse momentum of the prompt photon and charm quark. The combination of
analytic and Monte Carlo integration methods used here to perform phase-space
integrations facilitates imposition of photon isolation restrictions and other
selections of relevance in experiments. Differential distributions are provided
for various observables. Positive correlations in rapidity are predicted.Comment: 27 pages in RevTex plus 14 figures in one compressed PS fil
- …