79 research outputs found

    Whole Exome Sequence Analysis Provides Novel Insights into the Genetic Framework of Childhood-Onset Pulmonary Arterial Hypertension.

    Get PDF
    Pulmonary arterial hypertension (PAH) describes a rare, progressive vascular disease caused by the obstruction of pulmonary arterioles, typically resulting in right heart failure. Whilst PAH most often manifests in adulthood, paediatric disease is considered to be a distinct entity with increased morbidity and often an unexplained resistance to current therapies. Recent genetic studies have substantially increased our understanding of PAH pathogenesis, providing opportunities for molecular diagnosis and presymptomatic genetic testing in families. However, the genetic architecture of childhood-onset PAH remains relatively poorly characterised. We sought to investigate a previously unsolved paediatric cohort (n = 18) using whole exome sequencing to improve the molecular diagnosis of childhood-onset PAH. Through a targeted investigation of 26 candidate genes, we applied a rigorous variant filtering methodology to enrich for rare, likely pathogenic variants. This analysis led to the detection of novel PAH risk alleles in five genes, including the first identification of a heterozygous ATP13A3 mutation in childhood-onset disease. In addition, we provide the first independent validation of BMP10 and PDGFD as genetic risk factors for PAH. These data provide a molecular diagnosis in 28% of paediatric cases, reflecting the increased genetic burden in childhood-onset disease and highlighting the importance of next-generation sequencing approaches to diagnostic surveillance

    Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management.

    Get PDF
    Paediatric pulmonary arterial hypertension (PAH) shares common features of adult disease, but is associated with several additional disorders and challenges that require unique approaches. This article discusses recent advances, ongoing challenges and distinct approaches for the care of children with PAH, as presented by the Paediatric Task Force of the 6th World Symposium on Pulmonary Hypertension. We provide updates of the current definition, epidemiology, classification, diagnostics and treatment of paediatric PAH, and identify critical knowledge gaps. Several features of paediatric PAH including the prominence of neonatal PAH, especially in pre-term infants with developmental lung diseases, and novel genetic causes of paediatric PAH are highlighted. The use of cardiac catheterisation as a diagnostic modality and haemodynamic definitions of PAH, including acute vasoreactivity, are addressed. Updates are provided on issues related to utility of the previous classification system to reflect paediatric-specific aetiologies and approaches to medical and interventional management of PAH, including the Potts shunt. Although a lack of clinical trial data for the use of PAH-targeted therapy persists, emerging data are improving the identification of appropriate targets for goal-oriented therapy in children. Such data will likely improve future clinical trial design to enhance outcomes in paediatric PAH

    Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for long-lived particles decaying into hadrons and at least one muon is presented. The analysis selects events that pass a muon or missing-transverse-momentum trigger and contain a displaced muon track and a displaced vertex. The analyzed dataset of proton-proton collisions at √ s = 13 TeV was collected with the ATLAS detector and corresponds to 136 fb − 1. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particle decays that occur in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are presented as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and interpreted as exclusion limits in scenarios with pair production of long-lived top squarks that decay via a small R -parity-violating coupling into a quark and a muon. Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns, and masses below 1.3 TeV are excluded for lifetimes between 0.01 ns and 30 ns

    Search for long-lived neutral particles produced in pp collisions at √s = 13 TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer

    Get PDF
    A search is presented for pair production of long-lived neutral particles using 33     fb − 1 of √ s = 13     TeV proton–proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of long-lived hidden-sector scalars with masses from 8 GeV to 400 GeV. The limits placed on several low-mass scalars extend previous exclusion limits in the range of proper lifetimes c τ from 5 cm to 1 m
    corecore