474 research outputs found

    A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components

    Get PDF
    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans

    Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia

    Get PDF
    Slip rates across active faults and folds show that late Quaternary faulting is distributed across the central Tien Shan, not concentrated at its margins. Nearly every intermontane basin contains Neogene and Quaternary syntectonic strata deformed by Holocene north‐south shortening on thrust or reverse faults. In a region that spans two thirds of the north‐south width of the central Tien Shan, slip rates on eight faults in five basins range from ∼0.1 to ∼3 mm/yr. Fault slip rates are derived from faulted and folded river terraces and from trenches. Radiocarbon, optically stimulated luminescence, and thermoluminescence ages limit ages of terraces and aid in their regional correlation. Monte Carlo simulations that sample from normally distributed and discrete probability distributions for each variable in the slip rate calculations generate most likely slip rate values and 95% confidence limits. Faults in basins appear to merge at relatively shallow depths with crustal‐scale ramps that underlie mountain ranges composed of pre‐Cenozoic rocks. The sum and overall pattern of late Quaternary rates of shortening are similar to current rates of north‐south shortening measured using Global Positioning System geodesy. This similarity suggests that deformation is concentrated along major fault zones near range‐basin margins. Such faults, separated by rigid blocks, accommodate most of the shortening in the upper crust

    Observation of Two Narrow States Decaying into Ξc+γ\Xi_{c}^{+}\gamma and Ξc0γ\Xi_{c}^{0}\gamma

    Full text link
    We report the first observation of two narrow charmed strange baryons decaying to Ξc+γ\Xi_c^+\gamma and Ξc0γ\Xi_c^0\gamma, respectively, using data from the CLEO II detector at CESR. We interpret the observed signals as the Ξc+(csu)\Xi_c^{+\prime}(c{su}) and Ξc0(csd)\Xi_c^{0\prime}(c{sd}), the symmetric partners of the well-established antisymmetric Ξc+(c[su])\Xi_c^+(c[su]) and Ξc0(c[sd])\Xi_c^0(c[sd]). The mass differences M(Ξc+)M(Ξc+)M(\Xi_c^{+\prime})-M(\Xi_c^+) and M(Ξc0)M(Ξc0)M(\Xi_c^{0\prime})-M(\Xi_c^0) are measured to be 107.8±1.7±2.5107.8\pm 1.7\pm 2.5 and 107.0±1.4±2.5MeV/c2107.0\pm 1.4\pm 2.5 MeV/c^2, respectively.Comment: 11 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN
    corecore