168 research outputs found

    Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries.

    Get PDF
    Viscoelastic models can be used to better understand arterial wall mechanics in physiological and pathological conditions. The arterial wall reveals very slow time-dependent decays in uniaxial stress-relaxation experiments, coherent with weak power-law functions. Quasi-linear viscoelastic (QLV) theory was successfully applied to modeling such responses, but an accurate estimation of the reduced relaxation function parameters can be very difficult. In this work, an alternative relaxation function based on fractional calculus theory is proposed to describe stress relaxation experiments in strips cut from healthy human aortas. Stress relaxation (1 h) was registered at three incremental stress levels. The novel relaxation function with three parameters was integrated into the QLV theory to fit experimental data. It was based in a modified Voigt model, including a fractional element of order α, called spring–pot. The stressrelaxation predictionwas accurate and fast. Sensitivity plots for each parameter presented a minimum near their optimal values. Least-squares errors remained below 2%. Values of order α = 0.1–0.3 confirmed a predominant elastic behavior. The other two parameters of the model can be associated to elastic and viscous constants that explain the time course of the observed relaxation function. The fractional-order model integrated into the QLV theory proved to capture the essential features of the arterial wall mechanical response

    Early Detection of Critical Pulmonary Shunts in Infants

    Get PDF
    This paper aims to improve the design of modern Medical Cyber Physical Systems through the addition of supplemental noninvasive monitors. Specifically, we focus on monitoring the arterial blood oxygen content (CaO2), one of the most closely observed vital signs in operating rooms, currently measured by a proxy - peripheral hemoglobin oxygen saturation (SpO2). While SpO2 is a good estimate of O2 content in the finger where it is measured, it is a delayed measure of its content in the arteries. In addition, it does not incorporate system dynamics and is a poor predictor of future CaO2 values. Therefore, as a first step towards supplementing the usage of SpO2, this work introduces a predictive monitor designed to provide early detection of critical drops in CaO2 caused by a pulmonary shunt in infants. To this end, we develop a formal model of the circulation of oxygen and carbon dioxide in the body, characterized by unknown patient-unique parameters. Employing the model, we design a matched subspace detector to provide a near constant false alarm rate invariant to these parameters and modeling uncertainties. Finally, we validate our approach on real-patient data from lung lobectomy surgeries performed at the Children\u27s Hospital of Philadelphia. Given 198 infants, the detector predicted 81% of the critical drops in CaO2 at an average of about 65 seconds earlier than the SpO2-based monitor, while achieving a 0:9% false alarm rate (representing about 2 false alarms per hour)

    Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research

    Get PDF
    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research

    Structured document algebra in action

    Get PDF
    A Structured Document Algebra (SDA) defines modules with variation points and how such modules compose. The basic operations are module addition and replacement. Repeated addition can create nested module structures. SDA also allows the decomposition of modules into smaller parts. In this paper we show how SDA modules can be used to deal algebraically with Software Product Lines (SPLs). In particular, we treat some fundamental concepts of SPLs, such as refinement and refactoring. This leads to mathematically precise formalization of fundamental concepts used in SPLs, which can be used for improved Feature-Oriented Software Development (FOSD) tooling
    • …
    corecore