199 research outputs found

    SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis

    Get PDF
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Atherosclerosis, which underlies life-threatening cardiovascular disorders such as myocardial infarction and stroke1, is initiated by passage of low-density lipoprotein (LDL) cholesterol into the artery wall and its engulfment by macrophages, which leads to foam cell formation and lesion development2,3. It is unclear how circulating LDL enters the artery wall to instigate atherosclerosis. Here we show in mice that scavenger receptor class B type 1 (SR-B1) in endothelial cells mediates the delivery of LDL into arteries and its accumulation by artery wall macrophages, thereby promoting atherosclerosis. LDL particles are colocalized with SR-B1 in endothelial cell intracellular vesicles in vivo, and transcytosis of LDL across endothelial monolayers requires its direct binding to SR-B1 and an eight-amino-acid cytoplasmic domain of the receptor that recruits the guanine nucleotide exchange factor dedicator of cytokinesis 4 (DOCK4)4. DOCK4 promotes internalization of SR-B1 and transport of LDL by coupling the binding of LDL to SR-B1 with activation of RAC1. The expression of SR-B1 and DOCK4 is increased in atherosclerosis-prone regions of the mouse aorta before lesion formation, and in human atherosclerotic arteries when compared with normal arteries. These findings challenge the long-held concept that atherogenesis involves passive movement of LDL across a compromised endothelial barrier. Interventions that inhibit the endothelial delivery of LDL into artery walls may represent a new therapeutic category in the battle against cardiovascular disease

    MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries

    Get PDF
    Vascular remodeling normalizes abnormal hemodynamic stresses through structural changes affecting vessel size and wall thickness. We investigated the role of inflammation in flow-mediated vascular remodeling using a murine model of partial outflow reduction without flow cessation or neointima formation. Common carotid arteries decreased in size after ipsilateral external carotid artery ligation in wild-type mice, but not in myeloid differentiation protein-88 (MyD88)–deficient mice. Inward remodeling was associated with MyD88-dependent and superoxide-initiated cytokine and chemokine production, as well as transient adventitial macrophage accumulation and activation. Macrophage depletion prevented flow-mediated inward vascular remodeling. Expression of MyD88 by intrinsic vascular cells was necessary for cytokine and chemokine production and changes in vessel size, whereas MyD88 expression by bone marrow–derived cells was obligatory for changes in vessel size. We conclude that there are at least two distinct roles for MyD88 in flow-mediated inward remodeling of conduit arteries. Our findings suggest that inflammation is necessary for vascular adaptation to changes in hemodynamic forces

    Intestine-Specific, Oral Delivery of Captopril/Montmorillonite: Formulation and Release Kinetics

    Get PDF
    The intercalation of captopril (CP) into the interlayers of montmorillonite (MMT) affords an intestine-selective drug delivery system that has a captopril-loading capacity of up to ca. 14 %w/w and which exhibits near-zero-order release kinetics

    Biochar composites: Emerging trends, field successes, and sustainability implications

    Get PDF
    • 

    corecore