3 research outputs found

    Microtomographic reconstruction of mandibular defects treated with xenografts and collagen-based membranes:a pre-clinical minipig model

    Get PDF
    The goal of this study was to evaluate hard tissue response following guided bone regeneration using commercially available bovine bone grafts and collagen membranes; bilayer collagen membrane and porcine pericardium-based membrane, by means of a non-destructive three-dimensional (3D) computerized volumetric analysis following microtomography reconstruction. Bone regenerative properties of various bovine bone graft materials were evaluated in the Göttingen minipig model. Two standardized intraosseous defects (15mm x 8mm x 8mm) were created bilaterally of the mandible of eighteen animals (n=72 defects). Groups were nested within the same subject and randomly distributed among the sites: (i) negative control (no graft and membrane), (ii) bovine bone graft/bilayer collagen membrane (BOB) (iii) Bio-Oss® bone graft/porcine pericardium-based membrane (BOJ) and (iv) cerabone® bone graft/porcine pericardium-based membrane (CJ). Samples were harvested at 4, 8, and 12-week time points (n=6 animal/time point). Segments were scanned using computerized microtomography (?CT) and three dimensionally reconstructed utilizing volumetric reconstruction software. Statistical analyses were performed using IBM SPSS with a significance level of 5%. From a temporal perspective, tridimensional evaluation revealed gradual bone ingrowth with the presence of particulate bone grafts bridging the defect walls, and mandibular architecture preservation over time. Volumetric analysis demonstrated no significant difference between all groups at 4 weeks (p>0.127). At 8 and 12 weeks there was a higher percentage of new bone formation for control and CJ groups when compared to BOB and BOJ groups (p<0.039). The natural bovine bone graft group showed more potential for graft resorption over time relative to bovine bone graft, significantly different between 4 and 8 weeks (p<0.003). Volumetric analysis yielded a favorable mandible shape with respect to time through the beneficial balance between graft resorption/bone regenerative capacity for the natural bovine bone graft

    Impact of implant thread design on insertion torque and osseointegration:a preclinical model

    Get PDF
    Successful osseointegration of endosteal dental implants has been attributed to implant design, including the macro-, micro- and nano- geometric properties. Based on current literature pertaining to implant design, the resultant cellular and bone healing response is unknown when the thread thickness of the implants is increased, resulting in an increased contact area in implants designed with healing chambers. The aim of this study was to evaluate the effect of two implant designs with different thread profiles on the osseointegration parameters and implant stability at 3- and 6-weeks in vivo using a well-established preclinical dog model. A total of 48 type V Ti alloy implants were divided in two groups according to their thread design (D1= +0.1x/mm and D2= +0.15x/mm) and placed in an interpolated fashion into the radii of six beagles. Insertion torque was measured at time of placement, radii were extracted for histological processing following 3- and 6-week healing intervals. Histologic and histomorphometric analyses were performed in terms of bone to implant contact (%BIC) and bone area fraction occupancy within implant threads (%BAFO). Statistical analyses were performed through a linear mixed model with fixed factors of time and implant thread design. Surface roughness analysis demonstrated no significant differences in Sa and Sq between D1 and D2 implant designs, which confirmed that both implant designs were homogenous except for their respective thread profiles. For insertion torque, statistically significant lower values were recorded for D1 in comparison to D2 (59.6 ± 11.1 and 78.9 ± 10.1 N?cm, respectively). Furthermore, there were no significant differences with respect to histological analysis and histomorphometric parameters, between D1 and D2 at both time points. Both thread profiles presented equivalent potential to successfully osseointegrate in the osteotomies, with D2 yielding higher mechanical retention upon placement without detrimental bone resorption

    Bone regeneration at extraction sockets filled with leukocyte-platelet-rich fibrin:an experimental pre-clinical study

    Get PDF
    We aimed to histomorphometrically evaluate the effects of Leucocyte-Platelet-Rich Fibrin (L-PRF), with and without the combination of a bone grafting material, for alveolar ridge preservation using an in vivo canine model. Seven dogs (Female Beagles, ~18-month-old) were acquired for the study. L-PRF was prepared from each individual animal by drawing venous blood and spinning them through a centrifuge at 408 RCF-clot (IntrasSpin, Intra-Lock, Boca Raton, FL). L-PRF membranes were obtained from XPression fabrication kit (Biohorizons Implant Systems, Inc., AL, USA). A split mouth approach was adopted with the first molar mesial and distal socket defects treated in an interpolated fashion of the following study groups: 1) Empty socket (negative control); 2) OSS filled defect 3) L-PRF membrane; and 4) Mix of Bio-Oss® with L-PRF. After six weeks, samples were harvested, histologically processed, and evaluated for bone area fraction occupancy (BAFO), vertical/horizontal ridge dimensions (VRD and HRD, respectively), and area of coronal soft tissue infiltration. BAFO was statistically lower for the control group in comparison to all treatment groups. Defects treated with Bio-Oss® were not statistically different then defects treated solely with L-PRF. Collapsed across all groups, L-PRF exhibited higher degrees of BAFO than groups without L-PRF. Defects filled with Bio-Oss® and Bio-Oss® with L-PRF demonstrated greater maintenance of VRD relative to the control group. Collapsed across all groups, Bio-Oss® maintained the VRD and resulted in less area of coronal soft tissue infiltration compared to the empty defect. Soft tissue infiltration observed at the coronal area was not statistically different among defects filled with L-PRF, Bio-Oss®, and Bio-Oss® with L-PRF. Inclusion of L-PRF to particulate xenograft did not promote additional bone heading at 6 weeks in vivo. However, we noted that L-PRF alone promoted alveolar socket regeneration to levels comparable to particulate xenografts, suggesting its potential utilization for socket preservation
    corecore