2 research outputs found

    Effects of direct renin blockade on renal & systemic hemodynamics and on raas activity, in weight excess and hypertension: A randomized clinical trial

    Get PDF
    Aim: The combination of weight excess and hypertension significantly contributes to cardiovascular risk and progressive kidney damage. An unfavorable renal hemodynamic profile is thought to contribute to this increased risk and may be ameliorated by direct renin inhibition (DRI). The aim of this trial was to assess the effect of DRI on renal and systemic hemodynamics and on RAAS activity, in men with weight excess and hypertension. Methods: A randomized, double-blind, cross-over clinical trial to determine the effect of DRI (aliskiren 300 mg/day), with angiotensin converting enzyme inhibition (ACEi; ramipril 10 mg/day) as a positive control, on renal and systemic hemodynamics, and on RAAS activity (n = 15). Results: Mean (SEM) Glomerular filtration rate (101 (5) mL/min/1.73m2) remained unaffected by DRI or ACEi. Effective renal plasma flow (ERPF; 301 (14) mL/min/1.73m2) was increased in response to DRI (320 (14) mL/min/1.73m2, P = 0.012) and ACEi (317 (15) mL/min/1.73m2, P = 0.045). Filtration fraction (FF; 34 (0.8)%) was reduced by DRI only (32 (0.7)%, P = 0.044). Mean arterial pressure (109 (2) mmHg) was reduced by DRI (101 (2) mmHg, P = 0.008) and ACEi (103 (3) mmHg, P = 0.037). RAAS activity was reduced by DRI and ACEi. Albuminuria (20 [9±42] mg/d) was reduced by DRI only (12 [5±28] mg/d, P = 0.030). Conclusions: In men with weight excess and hypertension, DRI and ACEi improved renal and systemic hemodynamics. Both DRI and ACEi reduced RAAS activity. Thus, DRI provides effective treatment in weight excess and hypertension

    Human kidney organoids produce functional renin

    Get PDF
    Renin production by the kidney is of vital importance for salt, volume, and blood pressure homeostasis. The lack of human models hampers investigation into the regulation of renin and its relevance for kidney physiology. To develop such a model, we used human induced pluripotent stem cell–derived kidney organoids to study the role of renin and the renin-angiotensin system in the kidney. Extensive characterization of the kidney organoids revealed kidney-specific cell populations consisting of podocytes, proximal and distal tubular cells, stromal cells and endothelial cells. We examined the presence of various components of the renin-angiotensin system such as angiotensin II receptors, angiotensinogen, and angiotensin-converting enzymes 1 and 2. We identified by single-cell sequencing, immunohistochemistry, and functional assays that cyclic AMP stimulation induces a subset of pericytes to increase the synthesis and secretion of enzymatically active renin. Renin production by the organoids was responsive to regulation by parathyroid hormone. Subcutaneously implanted kidney organoids in immunodeficient IL2Ry-/-Rag2-/- mice were successfully vascularized, maintained tubular and glomerular structures, and retained capacity to produce renin two months after implantation. Thus, our results demonstrate that kidney organoids express renin and provide insights into the endocrine potential of human kidney organoids, which is important for regenerative medicine in the context of the endocrine system
    corecore