25,026 research outputs found

    On the energy momentum dispersion in the lattice regularization

    Full text link
    For a free scalar boson field and for U(1) gauge theory finite volume (infrared) and other corrections to the energy-momentum dispersion in the lattice regularization are investigated calculating energy eigenstates from the fall off behavior of two-point correlation functions. For small lattices the squared dispersion energy defined by Edis2=Ek2E024i=1d1sin(ki/2)2E_{\rm dis}^2=E_{\vec{k}}^2-E_0^2-4\sum_{i=1}^{d-1}\sin(k_i/2)^2 is in both cases negative (dd is the Euclidean space-time dimension and EkE_{\vec{k}} the energy of momentum k\vec{k} eigenstates). Observation of Edis2=0E_{\rm dis}^2=0 has been an accepted method to demonstrate the existence of a massless photon (E0=0E_0=0) in 4D lattice gauge theory, which we supplement here by a study of its finite size corrections. A surprise from the lattice regularization of the free field is that infrared corrections do {\it not} eliminate a difference between the groundstate energy E0E_0 and the mass parameter MM of the free scalar lattice action. Instead, the relation E0=cosh1(1+M2/2)E_0=\cosh^{-1} (1+M^2/2) is derived independently of the spatial lattice size.Comment: 9 pages, 2 figures. Parts of the paper have been rewritten and expanded to clarify the result

    The probability distribution of a trapped Brownian particle in plane shear flows

    Full text link
    We investigate the statistical properties of an over-damped Brownian particle that is trapped by a harmonic potential and simultaneously exposed to a linear shear flow or to a plane Poiseuille flow. Its probability distribution is determined via the corresponding Smoluchowski equation, which is solved analytically for a linear shear flow. In the case of a plane Poiseuille flow, analytical approximations for the distribution are obtained by a perturbation analysis and they are substantiated by numerical results. There is a good agreement between the two approaches for a wide range of parameters.Comment: 5 pages, 4 figur

    The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments

    Full text link
    There has been great interest in applying the results of statistical mechanics to single molecule experiements. Recent work has highlighted so-called non-equilibrium work-energy relations and Fluctuation Theorems which take on an equilibrium-like (time independent) form. Here I give a very simple heuristic example where an equilibrium result (the barometric law for colloidal particles) arises from theory describing the {\em thermodynamically} non-equilibrium phenomenon of a single colloidal particle falling through solution due to gravity. This simple result arises from the fact that the particle, even while falling, is in {\em mechanical} equilibrium (gravitational force equal the viscous drag force) at every instant. The results are generalized by appeal to the central limit theorem. The resulting time independent equations that hold for thermodynamically non-equilibrium (and even non-stationary) processes offer great possibilities for rapid determination of thermodynamic parameters from single molecule experiments.Comment: 6 page

    Multicanonical Study of the 3D Ising Spin Glass

    Full text link
    We simulated the Edwards-Anderson Ising spin glass model in three dimensions via the recently proposed multicanonical ensemble. Physical quantities such as energy density, specific heat and entropy are evaluated at all temperatures. We studied their finite size scaling, as well as the zero temperature limit to explore the ground state properties.Comment: FSU-SCRI-92-121; 7 pages; sorry, no figures include

    Multicanonical Recursions

    Get PDF
    The problem of calculating multicanonical parameters recursively is discussed. I describe in detail a computational implementation which has worked reasonably well in practice.Comment: 23 pages, latex, 4 postscript figures included (uuencoded Z-compressed .tar file created by uufiles), figure file corrected

    Computing Masses from Effective Transfer Matrices

    Full text link
    We study the use of effective transfer matrices for the numerical computation of masses (or correlation lengths) in lattice spin models. The effective transfer matrix has a strongly reduced number of components. Its definition is motivated by a renormalization group transformation of the full model onto a 1-dimensional spin model. The matrix elements of the effective transfer matrix can be determined by Monte Carlo simulation. We show that the mass gap can be recovered exactly from the spectrum of the effective transfer matrix. As a first step towards application we performed a Monte Carlo study for the 2-dimensional Ising model. For the simulations in the broken phase we employed a multimagnetical demon algorithm. The results for the tunnelling correlation length are particularly encouraging.Comment: (revised version: a few references added) LaTeX file, 25 pages, 6 PostScript figures, (revised version: a few references added

    Multi-variable translation equation which arises from homothety

    Full text link
    In many regular cases, there exists a (properly defined) limit of iterations of a function in several real variables, and this limit satisfies the functional equation (1-z)f(x)=f(f(xz)(1-z)/z); here z is a scalar and x is a vector. This is a special case of a well-known translation equation. In this paper we present a complete solution to this functional equation in case f is a continuous function on a single point compactification of a 2-dimensional real vector space. It appears that, up to conjugation by a homogeneous continuous function, there are exactly four solutions. Further, in a 1-dimensional case we present a solution with no regularity assumptions on f.Comment: 15 page

    Particles held by springs in a linear shear flow exhibit oscillatory motion

    Get PDF
    The dynamics of small spheres, which are held by linear springs in a low Reynolds number shear flow at neighboring locations is investigated. The flow elongates the beads and the interplay of the shear gradient with the nonlinear behavior of the hydrodynamic interaction among the spheres causes in a large range of parameters a bifurcation to a surprising oscillatory bead motion. The parameter ranges, wherein this bifurcation is either super- or subcritical, are determined.Comment: 4 pages, 5 figure

    Multi-Overlap Simulations for Transitions between Reference Configurations

    Full text link
    We introduce a new procedure to construct weight factors, which flatten the probability density of the overlap with respect to some pre-defined reference configuration. This allows one to overcome free energy barriers in the overlap variable. Subsequently, we generalize the approach to deal with the overlaps with respect to two reference configurations so that transitions between them are induced. We illustrate our approach by simulations of the brainpeptide Met-enkephalin with the ECEPP/2 energy function using the global-energy-minimum and the second lowest-energy states as reference configurations. The free energy is obtained as functions of the dihedral and the root-mean-square distances from these two configurations. The latter allows one to identify the transition state and to estimate its associated free energy barrier.Comment: 12 pages, (RevTeX), 14 figures, Phys. Rev. E, submitte

    Testing Error Correcting Codes by Multicanonical Sampling of Rare Events

    Full text link
    The idea of rare event sampling is applied to the estimation of the performance of error-correcting codes. The essence of the idea is importance sampling of the pattern of noises in the channel by Multicanonical Monte Carlo, which enables efficient estimation of tails of the distribution of bit error rate. The idea is successfully tested with a convolutional code
    corecore