36,094 research outputs found

    Enhanced diffusion by reciprocal swimming

    Full text link
    Purcell's scallop theorem states that swimmers deforming their shapes in a time-reversible manner ("reciprocal" motion) cannot swim. Using numerical simulations and theoretical calculations we show here that in a fluctuating environment, reciprocal swimmers undergo, on time scales larger than that of their rotational diffusion, diffusive dynamics with enhanced diffusivities, possibly by orders of magnitude, above normal translational diffusion. Reciprocal actuation does therefore lead to a significant advantage over non-motile behavior for small organisms such as marine bacteria

    Synthetic Mechanochemical Molecular Swimmer

    Full text link
    A minimal design for a molecular swimmer is proposed that is a based on a mechanochemical propulsion mechanism. Conformational changes are induced by electrostatic actuation when specific parts of the molecule temporarily acquire net charges through catalyzed chemical reactions involving ionic components. The mechanochemical cycle is designed such that the resulting conformational changes would be sufficient for achieving low Reynolds number propulsion. The system is analyzed within the recently developed framework of stochastic swimmers to take account of the noisy environment at the molecular scale. The swimming velocity of the device is found to depend on the concentration of the fuel molecule according to the Michaelis-Menten rule in enzymatic reactions.Comment: 4 pages, 3 figure

    The Threatened Status of Steller Sea Lions, Eumetopias jubatus, under the Endangered Species Act: Effects on Alaska Groundfish Fisheries Management

    Get PDF
    In April 1990, the Steller sea lion, Eumetopias jubatus, was listed as threatened under the U.S. Endangered Species Act by emergency action. Competitive interactions with the billion-dollar Alaska commercial groundfish fisheries have been suggested as one of the possible contributing factors to the Steller sea lion population decline. Since the listing, fisheries managers have attempted to address the potential impacts of the groundfish fisheries on Steller sea lion recovery. In this paper, we review pertinent Federal legislation, biological information on the Steller sea lion decline, changes in the Alaska trawl fishery for walleye pollock, Theragra chalcogramma, since the late 1970's, andpossible interactions between fisheries and sea lions. Using three cases, we illustrate how the listing of Steller sea lions has affected Alaska groundfish fisheries through: I) actions taken at the time of listing designed to limit the potential for directhuman-related sea lion mortality, 2) actions addressing spatial and temporal separation of fisheries from sea lions, and 3) introduction of risk-adverse stock assessment methodologies and Steller sea lion conservation considerations directly in the annual quota-setting process. This discussion shows some of the ways that North Pacific groundfish resource managers have begun to explicitly consider the conservation ofmarine mammal and other nontarget species

    Kinematics of the swimming of Spiroplasma

    Full text link
    \emph{Spiroplasma} swimming is studied with a simple model based on resistive-force theory. Specifically, we consider a bacterium shaped in the form of a helix that propagates traveling-wave distortions which flip the handedness of the helical cell body. We treat cell length, pitch angle, kink velocity, and distance between kinks as parameters and calculate the swimming velocity that arises due to the distortions. We find that, for a fixed pitch angle, scaling collapses the swimming velocity (and the swimming efficiency) to a universal curve that depends only on the ratio of the distance between kinks to the cell length. Simultaneously optimizing the swimming efficiency with respect to inter-kink length and pitch angle, we find that the optimal pitch angle is 35.5∘^\circ and the optimal inter-kink length ratio is 0.338, values in good agreement with experimental observations.Comment: 4 pages, 5 figure

    Morse theory on spaces of braids and Lagrangian dynamics

    Get PDF
    In the first half of the paper we construct a Morse-type theory on certain spaces of braid diagrams. We define a topological invariant of closed positive braids which is correlated with the existence of invariant sets of parabolic flows defined on discretized braid spaces. Parabolic flows, a type of one-dimensional lattice dynamics, evolve singular braid diagrams in such a way as to decrease their topological complexity; algebraic lengths decrease monotonically. This topological invariant is derived from a Morse-Conley homotopy index and provides a gloablization of `lap number' techniques used in scalar parabolic PDEs. In the second half of the paper we apply this technology to second order Lagrangians via a discrete formulation of the variational problem. This culminates in a very general forcing theorem for the existence of infinitely many braid classes of closed orbits.Comment: Revised version: numerous changes in exposition. Slight modification of two proofs and one definition; 55 pages, 20 figure

    Collective chemotactic dynamics in the presence of self-generated fluid flows

    No full text
    In micro-swimmer suspensions locomotion necessarily generates fluid motion, and it is known that such flows can lead to collective behavior from unbiased swimming. We examine the complementary problem of how chemotaxis is affected by self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis to the flows of collective swimming shows separate branches of chemotactic and hydrodynamic instabilities for isotropic suspensions, the first driving aggregation, the second producing increased orientational order in suspensions of "pushers" and maximal disorder in suspensions of "pullers". Nonlinear simulations show that hydrodynamic interactions can limit and modify chemotactically-driven aggregation dynamics. In puller suspensions the dynamics form aggregates that are mutually-repelling due to the non-trivial flows. In pusher suspensions chemotactic aggregation can lead to destabilizing flows that fragment the regions of aggregation.Comment: 4 page

    The smallest eigenvalue of Hankel matrices

    Full text link
    Let H_N=(s_{n+m}),n,m\le N denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behaviour of the smallest eigenvalue lambda_N of H_N. It is proved that lambda_N has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda_N can be arbitrarily slow or arbitrarily fast. In the indeterminate case, where lambda_N is known to be bounded below by a positive constant, we prove that the limit of the n'th smallest eigenvalue of H_N for N tending to infinity tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed

    Pest-predator spatial relationships in winter rape: implications for integrated crop management

    Get PDF
    Douglas Warner, Les J Allen-Williams, Andrew W Ferguson, and Ingrid H Williams, 'Pest–predator spatial relationships in winter rape: implications for integrated crop management', Pest Management Science, Vol. 56 (11): 977-982, November 2000, doi: 10.1002/1526-4998(200011)56:113.0.CO;2-U. Copyright © 2000 Society of Chemical IndustryThe brassica pod midge (Dasineura brassicae) is an important and widespread pest of winter and spring oilseed rape throughout Europe. Pods infested by D brassicae larvae split prematurely, releasing seeds, and the larvae drop to the soil into which they burrow to pupate. At this stage in its lifecycle D brassicae is potentially vulnerable to predation by carabid beetles foraging on the soil surface. This is the first study in the UK to focus on carabid beetles as predators of D brassicae in the oilseed rape crop. The spatio-temporal distributions of larvae of D brassicae dropping to the soil from the crop canopy and of adult carabid beetles active on the soil surface were analysed in two consecutive years. Insect samples were collected from spatially referenced sampling points across each crop. Counts of insects were mapped and analysed, and the degree of spatial association between predator and prey determined using Spatial Analysis by Distance Indices (SADIE). Carabid species abundant and active during peak drop of first generation D brassicae larvae included Agonum dorsale, Amara similata, Harpalus rufipes and Nebria brevicollis. The larvae of D brassicae had a marked edge distribution within the crop. SADIE analysis revealed significant spatial association between larvae of D brassicae and adult H rufipes (P <0.05) in 1998, but not with adults of A dorsale, A similata or N brevicollis. In 1999, there was strong spatial association only between larvae of D brassicae and adult A dorsale (P <0.01). Aggregation of N brevicollis adults occurred in some areas of greatest D brassicae larval counts in 1999, but overall spatial association was not signi®cant. The distributions are discussed in terms of their relevance to integrated crop management (ICM) strategies and spatial targeting of insecticides.Peer reviewe

    Individual differences in white matter microstructure reflect variation in functional connectivity during action choice.

    Get PDF
    The relation between brain structure and function is of fundamental importance in neuroscience. Comparisons between behavioral and brain imaging measures suggest that variation in brain structure correlates with the presence of specific skills[1-3]. Behavioral measures, however, reflect the integrated function of multiple brain regions. Rather than behavior, a physiological index of function could be a more sensitive and informative measure with which to compare structural measures. Here, we test for a relationship between a physiological measure of functional connectivity between two brain areas during a simple decision making task and a measure of structural connectivity. Paired-pulse transcranial magnetic stimulation indexed functional connectivity between two regions important for action choices: premotor and motor cortex. Fractional anisotropy (FA), a marker of microstructural integrity, indexed structural connectivity. Individual differences in functional connectivity during action selection show highly specific correlations with FA in localised regions of white matter interconnecting regions including the premotor and motor cortex. Probabilistic tractography[4, 5], a technique for identifying fibre pathways from diffusion-weighted imaging (DWI), reconstructed the anatomical networks linking the component brain regions involved in making decisions. These findings demonstrate a relationship between individual differences in functional and structural connectivity within human brain networks central to action choice
    • …
    corecore